Properties

Label 2-4002-1.1-c1-0-52
Degree $2$
Conductor $4002$
Sign $-1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 2.26·5-s + 6-s − 5.18·7-s − 8-s + 9-s − 2.26·10-s + 1.67·11-s − 12-s + 3.65·13-s + 5.18·14-s − 2.26·15-s + 16-s − 3.94·17-s − 18-s − 2.02·19-s + 2.26·20-s + 5.18·21-s − 1.67·22-s + 23-s + 24-s + 0.115·25-s − 3.65·26-s − 27-s − 5.18·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.01·5-s + 0.408·6-s − 1.95·7-s − 0.353·8-s + 0.333·9-s − 0.715·10-s + 0.506·11-s − 0.288·12-s + 1.01·13-s + 1.38·14-s − 0.583·15-s + 0.250·16-s − 0.955·17-s − 0.235·18-s − 0.464·19-s + 0.505·20-s + 1.13·21-s − 0.357·22-s + 0.208·23-s + 0.204·24-s + 0.0230·25-s − 0.717·26-s − 0.192·27-s − 0.979·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 - T \)
good5 \( 1 - 2.26T + 5T^{2} \)
7 \( 1 + 5.18T + 7T^{2} \)
11 \( 1 - 1.67T + 11T^{2} \)
13 \( 1 - 3.65T + 13T^{2} \)
17 \( 1 + 3.94T + 17T^{2} \)
19 \( 1 + 2.02T + 19T^{2} \)
31 \( 1 - 10.1T + 31T^{2} \)
37 \( 1 + 0.341T + 37T^{2} \)
41 \( 1 + 6.99T + 41T^{2} \)
43 \( 1 + 8.58T + 43T^{2} \)
47 \( 1 + 8.56T + 47T^{2} \)
53 \( 1 - 10.6T + 53T^{2} \)
59 \( 1 + 0.919T + 59T^{2} \)
61 \( 1 - 10.0T + 61T^{2} \)
67 \( 1 - 8.06T + 67T^{2} \)
71 \( 1 + 5.56T + 71T^{2} \)
73 \( 1 + 5.95T + 73T^{2} \)
79 \( 1 + 12.7T + 79T^{2} \)
83 \( 1 + 3.91T + 83T^{2} \)
89 \( 1 - 6.19T + 89T^{2} \)
97 \( 1 + 11.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.402472388296662540643397749268, −6.93281404929463727274624046884, −6.54953398071201384960728743742, −6.23094522682716637445176121909, −5.42243879006788520906132104537, −4.16556889081898957804073998327, −3.26626950606811818235073410830, −2.35135395590151066045175330692, −1.22356959658963139312500943873, 0, 1.22356959658963139312500943873, 2.35135395590151066045175330692, 3.26626950606811818235073410830, 4.16556889081898957804073998327, 5.42243879006788520906132104537, 6.23094522682716637445176121909, 6.54953398071201384960728743742, 6.93281404929463727274624046884, 8.402472388296662540643397749268

Graph of the $Z$-function along the critical line