Properties

Label 2-4002-1.1-c1-0-47
Degree $2$
Conductor $4002$
Sign $1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 3.71·5-s + 6-s − 4.60·7-s + 8-s + 9-s + 3.71·10-s + 2.78·11-s + 12-s + 1.37·13-s − 4.60·14-s + 3.71·15-s + 16-s + 4.93·17-s + 18-s − 7.94·19-s + 3.71·20-s − 4.60·21-s + 2.78·22-s + 23-s + 24-s + 8.82·25-s + 1.37·26-s + 27-s − 4.60·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s + 1.66·5-s + 0.408·6-s − 1.74·7-s + 0.353·8-s + 0.333·9-s + 1.17·10-s + 0.838·11-s + 0.288·12-s + 0.382·13-s − 1.23·14-s + 0.960·15-s + 0.250·16-s + 1.19·17-s + 0.235·18-s − 1.82·19-s + 0.831·20-s − 1.00·21-s + 0.592·22-s + 0.208·23-s + 0.204·24-s + 1.76·25-s + 0.270·26-s + 0.192·27-s − 0.870·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.750390754\)
\(L(\frac12)\) \(\approx\) \(4.750390754\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
23 \( 1 - T \)
29 \( 1 + T \)
good5 \( 1 - 3.71T + 5T^{2} \)
7 \( 1 + 4.60T + 7T^{2} \)
11 \( 1 - 2.78T + 11T^{2} \)
13 \( 1 - 1.37T + 13T^{2} \)
17 \( 1 - 4.93T + 17T^{2} \)
19 \( 1 + 7.94T + 19T^{2} \)
31 \( 1 - 3.30T + 31T^{2} \)
37 \( 1 - 6.62T + 37T^{2} \)
41 \( 1 - 11.1T + 41T^{2} \)
43 \( 1 - 2.25T + 43T^{2} \)
47 \( 1 - 2.24T + 47T^{2} \)
53 \( 1 + 9.83T + 53T^{2} \)
59 \( 1 + 8.05T + 59T^{2} \)
61 \( 1 - 6.65T + 61T^{2} \)
67 \( 1 + 4.47T + 67T^{2} \)
71 \( 1 + 12.5T + 71T^{2} \)
73 \( 1 - 4.28T + 73T^{2} \)
79 \( 1 - 7.22T + 79T^{2} \)
83 \( 1 + 0.204T + 83T^{2} \)
89 \( 1 + 6.34T + 89T^{2} \)
97 \( 1 + 9.98T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.675721573297086754333989159981, −7.52786583352739567846580266586, −6.59757648005080965320546947189, −6.12545088621105549713255873797, −5.87204758830449268438512900988, −4.56444185656172689283646623128, −3.73459347337016259018200106871, −2.91928288832540979581980285398, −2.28680206260758040551851409909, −1.17660033937910510025208369478, 1.17660033937910510025208369478, 2.28680206260758040551851409909, 2.91928288832540979581980285398, 3.73459347337016259018200106871, 4.56444185656172689283646623128, 5.87204758830449268438512900988, 6.12545088621105549713255873797, 6.59757648005080965320546947189, 7.52786583352739567846580266586, 8.675721573297086754333989159981

Graph of the $Z$-function along the critical line