Properties

Label 2-4002-1.1-c1-0-40
Degree $2$
Conductor $4002$
Sign $-1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 2.69·5-s − 6-s − 3.87·7-s − 8-s + 9-s + 2.69·10-s − 6.10·11-s + 12-s + 5.79·13-s + 3.87·14-s − 2.69·15-s + 16-s + 8.21·17-s − 18-s + 4.11·19-s − 2.69·20-s − 3.87·21-s + 6.10·22-s − 23-s − 24-s + 2.25·25-s − 5.79·26-s + 27-s − 3.87·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 0.5·4-s − 1.20·5-s − 0.408·6-s − 1.46·7-s − 0.353·8-s + 0.333·9-s + 0.851·10-s − 1.84·11-s + 0.288·12-s + 1.60·13-s + 1.03·14-s − 0.695·15-s + 0.250·16-s + 1.99·17-s − 0.235·18-s + 0.944·19-s − 0.602·20-s − 0.846·21-s + 1.30·22-s − 0.208·23-s − 0.204·24-s + 0.451·25-s − 1.13·26-s + 0.192·27-s − 0.733·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 - T \)
good5 \( 1 + 2.69T + 5T^{2} \)
7 \( 1 + 3.87T + 7T^{2} \)
11 \( 1 + 6.10T + 11T^{2} \)
13 \( 1 - 5.79T + 13T^{2} \)
17 \( 1 - 8.21T + 17T^{2} \)
19 \( 1 - 4.11T + 19T^{2} \)
31 \( 1 - 0.978T + 31T^{2} \)
37 \( 1 + 2.93T + 37T^{2} \)
41 \( 1 + 10.0T + 41T^{2} \)
43 \( 1 + 4.09T + 43T^{2} \)
47 \( 1 - 6.91T + 47T^{2} \)
53 \( 1 - 4.37T + 53T^{2} \)
59 \( 1 + 6.65T + 59T^{2} \)
61 \( 1 - 6.57T + 61T^{2} \)
67 \( 1 - 9.19T + 67T^{2} \)
71 \( 1 + 11.3T + 71T^{2} \)
73 \( 1 - 13.1T + 73T^{2} \)
79 \( 1 + 10.9T + 79T^{2} \)
83 \( 1 + 2.83T + 83T^{2} \)
89 \( 1 + 12.6T + 89T^{2} \)
97 \( 1 - 7.30T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.179652530733629203584229613045, −7.54207439310351388837298797230, −6.95678425196377931917284626332, −5.92891937040524937261766939313, −5.25009901827942567626099290320, −3.73029235010573170638258859963, −3.38106894961160193091346018471, −2.73959649428372584792550574622, −1.14387340517247776199677169083, 0, 1.14387340517247776199677169083, 2.73959649428372584792550574622, 3.38106894961160193091346018471, 3.73029235010573170638258859963, 5.25009901827942567626099290320, 5.92891937040524937261766939313, 6.95678425196377931917284626332, 7.54207439310351388837298797230, 8.179652530733629203584229613045

Graph of the $Z$-function along the critical line