Properties

Label 2-4002-1.1-c1-0-39
Degree $2$
Conductor $4002$
Sign $-1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 4·7-s − 8-s + 9-s − 12-s + 6·13-s + 4·14-s + 16-s − 18-s + 4·21-s − 23-s + 24-s − 5·25-s − 6·26-s − 27-s − 4·28-s − 29-s − 8·31-s − 32-s + 36-s + 2·37-s − 6·39-s + 10·41-s − 4·42-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.288·12-s + 1.66·13-s + 1.06·14-s + 1/4·16-s − 0.235·18-s + 0.872·21-s − 0.208·23-s + 0.204·24-s − 25-s − 1.17·26-s − 0.192·27-s − 0.755·28-s − 0.185·29-s − 1.43·31-s − 0.176·32-s + 1/6·36-s + 0.328·37-s − 0.960·39-s + 1.56·41-s − 0.617·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 + T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 16 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.086346232514267307291222407424, −7.33574135193017491274962696316, −6.48835756453833685046997427127, −6.09762129822235473501575135060, −5.44160286452899607032939687636, −3.95432643292848018101273197395, −3.52792839035249660276402233750, −2.34051701016048875038352515307, −1.12380141780598365025220062322, 0, 1.12380141780598365025220062322, 2.34051701016048875038352515307, 3.52792839035249660276402233750, 3.95432643292848018101273197395, 5.44160286452899607032939687636, 6.09762129822235473501575135060, 6.48835756453833685046997427127, 7.33574135193017491274962696316, 8.086346232514267307291222407424

Graph of the $Z$-function along the critical line