L(s) = 1 | + 2-s − 3-s + 4-s + 2·5-s − 6-s + 4·7-s + 8-s + 9-s + 2·10-s − 12-s − 2·13-s + 4·14-s − 2·15-s + 16-s − 6·17-s + 18-s + 4·19-s + 2·20-s − 4·21-s + 23-s − 24-s − 25-s − 2·26-s − 27-s + 4·28-s + 29-s − 2·30-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.894·5-s − 0.408·6-s + 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.632·10-s − 0.288·12-s − 0.554·13-s + 1.06·14-s − 0.516·15-s + 1/4·16-s − 1.45·17-s + 0.235·18-s + 0.917·19-s + 0.447·20-s − 0.872·21-s + 0.208·23-s − 0.204·24-s − 1/5·25-s − 0.392·26-s − 0.192·27-s + 0.755·28-s + 0.185·29-s − 0.365·30-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.656387065 |
L(21) |
≈ |
3.656387065 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 23 | 1−T |
| 29 | 1−T |
good | 5 | 1−2T+pT2 |
| 7 | 1−4T+pT2 |
| 11 | 1+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1+6T+pT2 |
| 19 | 1−4T+pT2 |
| 31 | 1−8T+pT2 |
| 37 | 1−10T+pT2 |
| 41 | 1−10T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+8T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1−12T+pT2 |
| 61 | 1+14T+pT2 |
| 67 | 1−16T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1−2T+pT2 |
| 79 | 1+16T+pT2 |
| 83 | 1+12T+pT2 |
| 89 | 1−10T+pT2 |
| 97 | 1−6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.263585704963024975830727045832, −7.63156864718409983699746942194, −6.80409326667564881991132180521, −6.04219302925733683856174147153, −5.44674612443065479179177428541, −4.60748063880942386605687322558, −4.36934955938838586718487397549, −2.76749490203986529835135686893, −2.05401603112340154266513492577, −1.09378025244341600177404013908,
1.09378025244341600177404013908, 2.05401603112340154266513492577, 2.76749490203986529835135686893, 4.36934955938838586718487397549, 4.60748063880942386605687322558, 5.44674612443065479179177428541, 6.04219302925733683856174147153, 6.80409326667564881991132180521, 7.63156864718409983699746942194, 8.263585704963024975830727045832