L(s) = 1 | + 2-s + 3-s + 4-s + 1.38·5-s + 6-s − 3.20·7-s + 8-s + 9-s + 1.38·10-s + 5.82·11-s + 12-s − 0.957·13-s − 3.20·14-s + 1.38·15-s + 16-s − 3.20·17-s + 18-s + 3.20·19-s + 1.38·20-s − 3.20·21-s + 5.82·22-s − 23-s + 24-s − 3.08·25-s − 0.957·26-s + 27-s − 3.20·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.619·5-s + 0.408·6-s − 1.21·7-s + 0.353·8-s + 0.333·9-s + 0.437·10-s + 1.75·11-s + 0.288·12-s − 0.265·13-s − 0.856·14-s + 0.357·15-s + 0.250·16-s − 0.777·17-s + 0.235·18-s + 0.735·19-s + 0.309·20-s − 0.699·21-s + 1.24·22-s − 0.208·23-s + 0.204·24-s − 0.616·25-s − 0.187·26-s + 0.192·27-s − 0.605·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.208465572 |
L(21) |
≈ |
4.208465572 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 23 | 1+T |
| 29 | 1−T |
good | 5 | 1−1.38T+5T2 |
| 7 | 1+3.20T+7T2 |
| 11 | 1−5.82T+11T2 |
| 13 | 1+0.957T+13T2 |
| 17 | 1+3.20T+17T2 |
| 19 | 1−3.20T+19T2 |
| 31 | 1−5.72T+31T2 |
| 37 | 1−5.22T+37T2 |
| 41 | 1+0.0838T+41T2 |
| 43 | 1−9.91T+43T2 |
| 47 | 1−8.60T+47T2 |
| 53 | 1−12.9T+53T2 |
| 59 | 1−1.55T+59T2 |
| 61 | 1+11.1T+61T2 |
| 67 | 1−8.39T+67T2 |
| 71 | 1+11.0T+71T2 |
| 73 | 1−9.74T+73T2 |
| 79 | 1+8.33T+79T2 |
| 83 | 1+10.5T+83T2 |
| 89 | 1+8.98T+89T2 |
| 97 | 1−7.71T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.607250613063000775493068800738, −7.46228480782137882280889406906, −6.83428656669093386248928786111, −6.21350795132052184310064649521, −5.68078310836492675432732822605, −4.35569426831636427665935057582, −3.93599366292903357364614241732, −2.97527158551406448730150668195, −2.26911511414332033860136081135, −1.08785004485030173178600087229,
1.08785004485030173178600087229, 2.26911511414332033860136081135, 2.97527158551406448730150668195, 3.93599366292903357364614241732, 4.35569426831636427665935057582, 5.68078310836492675432732822605, 6.21350795132052184310064649521, 6.83428656669093386248928786111, 7.46228480782137882280889406906, 8.607250613063000775493068800738