Properties

Label 2-4002-1.1-c1-0-35
Degree $2$
Conductor $4002$
Sign $1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 1.38·5-s + 6-s − 3.20·7-s + 8-s + 9-s + 1.38·10-s + 5.82·11-s + 12-s − 0.957·13-s − 3.20·14-s + 1.38·15-s + 16-s − 3.20·17-s + 18-s + 3.20·19-s + 1.38·20-s − 3.20·21-s + 5.82·22-s − 23-s + 24-s − 3.08·25-s − 0.957·26-s + 27-s − 3.20·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s + 0.619·5-s + 0.408·6-s − 1.21·7-s + 0.353·8-s + 0.333·9-s + 0.437·10-s + 1.75·11-s + 0.288·12-s − 0.265·13-s − 0.856·14-s + 0.357·15-s + 0.250·16-s − 0.777·17-s + 0.235·18-s + 0.735·19-s + 0.309·20-s − 0.699·21-s + 1.24·22-s − 0.208·23-s + 0.204·24-s − 0.616·25-s − 0.187·26-s + 0.192·27-s − 0.605·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.208465572\)
\(L(\frac12)\) \(\approx\) \(4.208465572\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
23 \( 1 + T \)
29 \( 1 - T \)
good5 \( 1 - 1.38T + 5T^{2} \)
7 \( 1 + 3.20T + 7T^{2} \)
11 \( 1 - 5.82T + 11T^{2} \)
13 \( 1 + 0.957T + 13T^{2} \)
17 \( 1 + 3.20T + 17T^{2} \)
19 \( 1 - 3.20T + 19T^{2} \)
31 \( 1 - 5.72T + 31T^{2} \)
37 \( 1 - 5.22T + 37T^{2} \)
41 \( 1 + 0.0838T + 41T^{2} \)
43 \( 1 - 9.91T + 43T^{2} \)
47 \( 1 - 8.60T + 47T^{2} \)
53 \( 1 - 12.9T + 53T^{2} \)
59 \( 1 - 1.55T + 59T^{2} \)
61 \( 1 + 11.1T + 61T^{2} \)
67 \( 1 - 8.39T + 67T^{2} \)
71 \( 1 + 11.0T + 71T^{2} \)
73 \( 1 - 9.74T + 73T^{2} \)
79 \( 1 + 8.33T + 79T^{2} \)
83 \( 1 + 10.5T + 83T^{2} \)
89 \( 1 + 8.98T + 89T^{2} \)
97 \( 1 - 7.71T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.607250613063000775493068800738, −7.46228480782137882280889406906, −6.83428656669093386248928786111, −6.21350795132052184310064649521, −5.68078310836492675432732822605, −4.35569426831636427665935057582, −3.93599366292903357364614241732, −2.97527158551406448730150668195, −2.26911511414332033860136081135, −1.08785004485030173178600087229, 1.08785004485030173178600087229, 2.26911511414332033860136081135, 2.97527158551406448730150668195, 3.93599366292903357364614241732, 4.35569426831636427665935057582, 5.68078310836492675432732822605, 6.21350795132052184310064649521, 6.83428656669093386248928786111, 7.46228480782137882280889406906, 8.607250613063000775493068800738

Graph of the $Z$-function along the critical line