L(s) = 1 | − 2-s + 3-s + 4-s + 4·5-s − 6-s − 8-s + 9-s − 4·10-s + 12-s − 2·13-s + 4·15-s + 16-s + 4·17-s − 18-s + 4·19-s + 4·20-s − 23-s − 24-s + 11·25-s + 2·26-s + 27-s − 29-s − 4·30-s − 32-s − 4·34-s + 36-s + 2·37-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577·3-s + 1/2·4-s + 1.78·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 1.26·10-s + 0.288·12-s − 0.554·13-s + 1.03·15-s + 1/4·16-s + 0.970·17-s − 0.235·18-s + 0.917·19-s + 0.894·20-s − 0.208·23-s − 0.204·24-s + 11/5·25-s + 0.392·26-s + 0.192·27-s − 0.185·29-s − 0.730·30-s − 0.176·32-s − 0.685·34-s + 1/6·36-s + 0.328·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.629011397\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.629011397\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 - T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 + T \) |
good | 5 | \( 1 - 4 T + p T^{2} \) |
| 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 4 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 4 T + p T^{2} \) |
| 59 | \( 1 - 8 T + p T^{2} \) |
| 61 | \( 1 - 6 T + p T^{2} \) |
| 67 | \( 1 - 2 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 6 T + p T^{2} \) |
| 79 | \( 1 + 2 T + p T^{2} \) |
| 83 | \( 1 - 14 T + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + 12 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.551231241777373500582267250073, −7.81813125460748135589814895645, −7.05856558855263757560069044572, −6.33172175295868445703252356619, −5.54733361459313485443848642347, −4.95494042039172426130458969123, −3.50989093785209109916887500252, −2.66735401582025278323523094777, −1.93647848526306893950400856932, −1.07660477402409874239789605676,
1.07660477402409874239789605676, 1.93647848526306893950400856932, 2.66735401582025278323523094777, 3.50989093785209109916887500252, 4.95494042039172426130458969123, 5.54733361459313485443848642347, 6.33172175295868445703252356619, 7.05856558855263757560069044572, 7.81813125460748135589814895645, 8.551231241777373500582267250073