Properties

Label 2-4002-1.1-c1-0-31
Degree $2$
Conductor $4002$
Sign $1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 1.78·5-s − 6-s + 0.126·7-s + 8-s + 9-s + 1.78·10-s − 2.47·11-s − 12-s + 4.19·13-s + 0.126·14-s − 1.78·15-s + 16-s + 7.66·17-s + 18-s + 0.126·19-s + 1.78·20-s − 0.126·21-s − 2.47·22-s + 23-s − 24-s − 1.79·25-s + 4.19·26-s − 27-s + 0.126·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.800·5-s − 0.408·6-s + 0.0478·7-s + 0.353·8-s + 0.333·9-s + 0.565·10-s − 0.745·11-s − 0.288·12-s + 1.16·13-s + 0.0338·14-s − 0.461·15-s + 0.250·16-s + 1.85·17-s + 0.235·18-s + 0.0290·19-s + 0.400·20-s − 0.0276·21-s − 0.527·22-s + 0.208·23-s − 0.204·24-s − 0.359·25-s + 0.823·26-s − 0.192·27-s + 0.0239·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.245676925\)
\(L(\frac12)\) \(\approx\) \(3.245676925\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 - T \)
good5 \( 1 - 1.78T + 5T^{2} \)
7 \( 1 - 0.126T + 7T^{2} \)
11 \( 1 + 2.47T + 11T^{2} \)
13 \( 1 - 4.19T + 13T^{2} \)
17 \( 1 - 7.66T + 17T^{2} \)
19 \( 1 - 0.126T + 19T^{2} \)
31 \( 1 - 3.37T + 31T^{2} \)
37 \( 1 - 0.736T + 37T^{2} \)
41 \( 1 + 2.59T + 41T^{2} \)
43 \( 1 + 6.10T + 43T^{2} \)
47 \( 1 + 6.46T + 47T^{2} \)
53 \( 1 - 6.06T + 53T^{2} \)
59 \( 1 + 3.99T + 59T^{2} \)
61 \( 1 - 6.03T + 61T^{2} \)
67 \( 1 - 8.50T + 67T^{2} \)
71 \( 1 - 0.604T + 71T^{2} \)
73 \( 1 - 3.57T + 73T^{2} \)
79 \( 1 - 10.1T + 79T^{2} \)
83 \( 1 - 5.53T + 83T^{2} \)
89 \( 1 - 18.3T + 89T^{2} \)
97 \( 1 - 9.09T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.188595454983906867891333338951, −7.74488530850097262552236539979, −6.59722175655101401151623082079, −6.17841452944349235645423143508, −5.33905891410561115365331215249, −5.05195477351417119930915873180, −3.79752454289482616995357452928, −3.12477796909336906577067401104, −1.96996952547322643964347186666, −1.01806165169176687269283320691, 1.01806165169176687269283320691, 1.96996952547322643964347186666, 3.12477796909336906577067401104, 3.79752454289482616995357452928, 5.05195477351417119930915873180, 5.33905891410561115365331215249, 6.17841452944349235645423143508, 6.59722175655101401151623082079, 7.74488530850097262552236539979, 8.188595454983906867891333338951

Graph of the $Z$-function along the critical line