L(s) = 1 | + 2-s − 3-s + 4-s + 1.78·5-s − 6-s + 0.126·7-s + 8-s + 9-s + 1.78·10-s − 2.47·11-s − 12-s + 4.19·13-s + 0.126·14-s − 1.78·15-s + 16-s + 7.66·17-s + 18-s + 0.126·19-s + 1.78·20-s − 0.126·21-s − 2.47·22-s + 23-s − 24-s − 1.79·25-s + 4.19·26-s − 27-s + 0.126·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.800·5-s − 0.408·6-s + 0.0478·7-s + 0.353·8-s + 0.333·9-s + 0.565·10-s − 0.745·11-s − 0.288·12-s + 1.16·13-s + 0.0338·14-s − 0.461·15-s + 0.250·16-s + 1.85·17-s + 0.235·18-s + 0.0290·19-s + 0.400·20-s − 0.0276·21-s − 0.527·22-s + 0.208·23-s − 0.204·24-s − 0.359·25-s + 0.823·26-s − 0.192·27-s + 0.0239·28-s + ⋯ |
Λ(s)=(=(4002s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4002s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.245676925 |
L(21) |
≈ |
3.245676925 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 23 | 1−T |
| 29 | 1−T |
good | 5 | 1−1.78T+5T2 |
| 7 | 1−0.126T+7T2 |
| 11 | 1+2.47T+11T2 |
| 13 | 1−4.19T+13T2 |
| 17 | 1−7.66T+17T2 |
| 19 | 1−0.126T+19T2 |
| 31 | 1−3.37T+31T2 |
| 37 | 1−0.736T+37T2 |
| 41 | 1+2.59T+41T2 |
| 43 | 1+6.10T+43T2 |
| 47 | 1+6.46T+47T2 |
| 53 | 1−6.06T+53T2 |
| 59 | 1+3.99T+59T2 |
| 61 | 1−6.03T+61T2 |
| 67 | 1−8.50T+67T2 |
| 71 | 1−0.604T+71T2 |
| 73 | 1−3.57T+73T2 |
| 79 | 1−10.1T+79T2 |
| 83 | 1−5.53T+83T2 |
| 89 | 1−18.3T+89T2 |
| 97 | 1−9.09T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.188595454983906867891333338951, −7.74488530850097262552236539979, −6.59722175655101401151623082079, −6.17841452944349235645423143508, −5.33905891410561115365331215249, −5.05195477351417119930915873180, −3.79752454289482616995357452928, −3.12477796909336906577067401104, −1.96996952547322643964347186666, −1.01806165169176687269283320691,
1.01806165169176687269283320691, 1.96996952547322643964347186666, 3.12477796909336906577067401104, 3.79752454289482616995357452928, 5.05195477351417119930915873180, 5.33905891410561115365331215249, 6.17841452944349235645423143508, 6.59722175655101401151623082079, 7.74488530850097262552236539979, 8.188595454983906867891333338951