L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s + 4·7-s − 8-s + 9-s − 10-s − 3·11-s − 12-s + 13-s − 4·14-s − 15-s + 16-s + 6·17-s − 18-s + 6·19-s + 20-s − 4·21-s + 3·22-s − 23-s + 24-s − 4·25-s − 26-s − 27-s + 4·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.904·11-s − 0.288·12-s + 0.277·13-s − 1.06·14-s − 0.258·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 1.37·19-s + 0.223·20-s − 0.872·21-s + 0.639·22-s − 0.208·23-s + 0.204·24-s − 4/5·25-s − 0.196·26-s − 0.192·27-s + 0.755·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.587112286\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.587112286\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 3 | \( 1 + T \) |
| 23 | \( 1 + T \) |
| 29 | \( 1 - T \) |
good | 5 | \( 1 - T + p T^{2} \) |
| 7 | \( 1 - 4 T + p T^{2} \) |
| 11 | \( 1 + 3 T + p T^{2} \) |
| 13 | \( 1 - T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 - 6 T + p T^{2} \) |
| 31 | \( 1 + T + p T^{2} \) |
| 37 | \( 1 - 3 T + p T^{2} \) |
| 41 | \( 1 - T + p T^{2} \) |
| 43 | \( 1 - 6 T + p T^{2} \) |
| 47 | \( 1 - 4 T + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 + 3 T + p T^{2} \) |
| 61 | \( 1 - 7 T + p T^{2} \) |
| 67 | \( 1 - 3 T + p T^{2} \) |
| 71 | \( 1 - 9 T + p T^{2} \) |
| 73 | \( 1 - 2 T + p T^{2} \) |
| 79 | \( 1 - 12 T + p T^{2} \) |
| 83 | \( 1 + 10 T + p T^{2} \) |
| 89 | \( 1 - 12 T + p T^{2} \) |
| 97 | \( 1 + 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.116518031188909860699496077487, −7.897389736606162815494549010783, −7.26901515612892861868545597635, −6.12674928107374539876158219322, −5.42539663289774624150845881567, −5.06231417000711751300538719687, −3.85775494523073893150422805641, −2.68509158400351681610574586045, −1.66916274996235778813698067948, −0.894785560434857490927728907567,
0.894785560434857490927728907567, 1.66916274996235778813698067948, 2.68509158400351681610574586045, 3.85775494523073893150422805641, 5.06231417000711751300538719687, 5.42539663289774624150845881567, 6.12674928107374539876158219322, 7.26901515612892861868545597635, 7.897389736606162815494549010783, 8.116518031188909860699496077487