Properties

Label 2-4002-1.1-c1-0-16
Degree $2$
Conductor $4002$
Sign $-1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 3.83·5-s + 6-s − 4.91·7-s − 8-s + 9-s + 3.83·10-s − 1.87·11-s − 12-s − 3.25·13-s + 4.91·14-s + 3.83·15-s + 16-s + 5.70·17-s − 18-s + 0.533·19-s − 3.83·20-s + 4.91·21-s + 1.87·22-s + 23-s + 24-s + 9.66·25-s + 3.25·26-s − 27-s − 4.91·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.71·5-s + 0.408·6-s − 1.85·7-s − 0.353·8-s + 0.333·9-s + 1.21·10-s − 0.565·11-s − 0.288·12-s − 0.902·13-s + 1.31·14-s + 0.988·15-s + 0.250·16-s + 1.38·17-s − 0.235·18-s + 0.122·19-s − 0.856·20-s + 1.07·21-s + 0.399·22-s + 0.208·23-s + 0.204·24-s + 1.93·25-s + 0.638·26-s − 0.192·27-s − 0.928·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $-1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
23 \( 1 - T \)
29 \( 1 - T \)
good5 \( 1 + 3.83T + 5T^{2} \)
7 \( 1 + 4.91T + 7T^{2} \)
11 \( 1 + 1.87T + 11T^{2} \)
13 \( 1 + 3.25T + 13T^{2} \)
17 \( 1 - 5.70T + 17T^{2} \)
19 \( 1 - 0.533T + 19T^{2} \)
31 \( 1 + 6.65T + 31T^{2} \)
37 \( 1 - 0.389T + 37T^{2} \)
41 \( 1 - 2.74T + 41T^{2} \)
43 \( 1 - 12.3T + 43T^{2} \)
47 \( 1 + 3.23T + 47T^{2} \)
53 \( 1 + 3.80T + 53T^{2} \)
59 \( 1 - 7.62T + 59T^{2} \)
61 \( 1 - 5.94T + 61T^{2} \)
67 \( 1 + 6.17T + 67T^{2} \)
71 \( 1 - 2.94T + 71T^{2} \)
73 \( 1 + 9.05T + 73T^{2} \)
79 \( 1 + 5.70T + 79T^{2} \)
83 \( 1 - 3.17T + 83T^{2} \)
89 \( 1 - 11.3T + 89T^{2} \)
97 \( 1 - 3.97T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79357917869079747112791660928, −7.46690798627149827489981611666, −6.88880940860389292765666508539, −5.99497680174800263226631439144, −5.19973178676256703420242350738, −4.05922036847546125271315778246, −3.37038555009085593767654404312, −2.66852703748557789518742391329, −0.77195571757687549539519268810, 0, 0.77195571757687549539519268810, 2.66852703748557789518742391329, 3.37038555009085593767654404312, 4.05922036847546125271315778246, 5.19973178676256703420242350738, 5.99497680174800263226631439144, 6.88880940860389292765666508539, 7.46690798627149827489981611666, 7.79357917869079747112791660928

Graph of the $Z$-function along the critical line