Properties

Label 2-4002-1.1-c1-0-1
Degree $2$
Conductor $4002$
Sign $1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 3.56·5-s + 6-s + 3.56·7-s − 8-s + 9-s + 3.56·10-s − 2·11-s − 12-s − 5.12·13-s − 3.56·14-s + 3.56·15-s + 16-s − 2.43·17-s − 18-s − 1.56·19-s − 3.56·20-s − 3.56·21-s + 2·22-s − 23-s + 24-s + 7.68·25-s + 5.12·26-s − 27-s + 3.56·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.59·5-s + 0.408·6-s + 1.34·7-s − 0.353·8-s + 0.333·9-s + 1.12·10-s − 0.603·11-s − 0.288·12-s − 1.42·13-s − 0.951·14-s + 0.919·15-s + 0.250·16-s − 0.591·17-s − 0.235·18-s − 0.358·19-s − 0.796·20-s − 0.777·21-s + 0.426·22-s − 0.208·23-s + 0.204·24-s + 1.53·25-s + 1.00·26-s − 0.192·27-s + 0.673·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4228350211\)
\(L(\frac12)\) \(\approx\) \(0.4228350211\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 - T \)
good5 \( 1 + 3.56T + 5T^{2} \)
7 \( 1 - 3.56T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 5.12T + 13T^{2} \)
17 \( 1 + 2.43T + 17T^{2} \)
19 \( 1 + 1.56T + 19T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 1.56T + 37T^{2} \)
41 \( 1 + 3.56T + 41T^{2} \)
43 \( 1 + 0.684T + 43T^{2} \)
47 \( 1 - 2.43T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 + 1.56T + 59T^{2} \)
61 \( 1 + 3.12T + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 0.246T + 79T^{2} \)
83 \( 1 + 2.87T + 83T^{2} \)
89 \( 1 + 3.12T + 89T^{2} \)
97 \( 1 - 13.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.303341589837278045060842141891, −7.65792385984152722402758558428, −7.37105242710467648765308728155, −6.49462963917441556074533770339, −5.25524844064432678307146103636, −4.73343355001403294946793321509, −4.04359928656030092853794585067, −2.80035019239922803942416440636, −1.77875576855483576732294434416, −0.41768954893914248499916994782, 0.41768954893914248499916994782, 1.77875576855483576732294434416, 2.80035019239922803942416440636, 4.04359928656030092853794585067, 4.73343355001403294946793321509, 5.25524844064432678307146103636, 6.49462963917441556074533770339, 7.37105242710467648765308728155, 7.65792385984152722402758558428, 8.303341589837278045060842141891

Graph of the $Z$-function along the critical line