Properties

Label 2-4002-1.1-c1-0-0
Degree $2$
Conductor $4002$
Sign $1$
Analytic cond. $31.9561$
Root an. cond. $5.65297$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 3.42·5-s − 6-s − 1.25·7-s + 8-s + 9-s − 3.42·10-s − 2.48·11-s − 12-s − 5.96·13-s − 1.25·14-s + 3.42·15-s + 16-s − 5.90·17-s + 18-s + 0.0494·19-s − 3.42·20-s + 1.25·21-s − 2.48·22-s − 23-s − 24-s + 6.71·25-s − 5.96·26-s − 27-s − 1.25·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.53·5-s − 0.408·6-s − 0.473·7-s + 0.353·8-s + 0.333·9-s − 1.08·10-s − 0.747·11-s − 0.288·12-s − 1.65·13-s − 0.334·14-s + 0.883·15-s + 0.250·16-s − 1.43·17-s + 0.235·18-s + 0.0113·19-s − 0.765·20-s + 0.273·21-s − 0.528·22-s − 0.208·23-s − 0.204·24-s + 1.34·25-s − 1.16·26-s − 0.192·27-s − 0.236·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4002 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4002\)    =    \(2 \cdot 3 \cdot 23 \cdot 29\)
Sign: $1$
Analytic conductor: \(31.9561\)
Root analytic conductor: \(5.65297\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4002,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7108217192\)
\(L(\frac12)\) \(\approx\) \(0.7108217192\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
23 \( 1 + T \)
29 \( 1 + T \)
good5 \( 1 + 3.42T + 5T^{2} \)
7 \( 1 + 1.25T + 7T^{2} \)
11 \( 1 + 2.48T + 11T^{2} \)
13 \( 1 + 5.96T + 13T^{2} \)
17 \( 1 + 5.90T + 17T^{2} \)
19 \( 1 - 0.0494T + 19T^{2} \)
31 \( 1 - 1.65T + 31T^{2} \)
37 \( 1 - 11.1T + 37T^{2} \)
41 \( 1 + 6.37T + 41T^{2} \)
43 \( 1 - 9.44T + 43T^{2} \)
47 \( 1 + 0.286T + 47T^{2} \)
53 \( 1 - 1.42T + 53T^{2} \)
59 \( 1 - 1.26T + 59T^{2} \)
61 \( 1 - 4.48T + 61T^{2} \)
67 \( 1 + 8.37T + 67T^{2} \)
71 \( 1 + 5.41T + 71T^{2} \)
73 \( 1 + 4.43T + 73T^{2} \)
79 \( 1 - 12.1T + 79T^{2} \)
83 \( 1 - 11.8T + 83T^{2} \)
89 \( 1 + 0.796T + 89T^{2} \)
97 \( 1 + 0.811T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.112310332834218977072934048079, −7.57672785419008241617813953570, −6.98502657390406066823172513517, −6.27827577487881850756498123689, −5.27013744827923693306452894101, −4.55287977913340675055817837799, −4.14310426609831373419575499539, −3.04229005679287920766225697693, −2.29302335023659879196793710071, −0.41601733269579951668410811674, 0.41601733269579951668410811674, 2.29302335023659879196793710071, 3.04229005679287920766225697693, 4.14310426609831373419575499539, 4.55287977913340675055817837799, 5.27013744827923693306452894101, 6.27827577487881850756498123689, 6.98502657390406066823172513517, 7.57672785419008241617813953570, 8.112310332834218977072934048079

Graph of the $Z$-function along the critical line