Properties

Label 2-4001-1.1-c1-0-9
Degree $2$
Conductor $4001$
Sign $1$
Analytic cond. $31.9481$
Root an. cond. $5.65226$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.40·2-s − 1.91·3-s + 3.76·4-s − 2.41·5-s + 4.60·6-s − 1.95·7-s − 4.24·8-s + 0.684·9-s + 5.80·10-s − 0.661·11-s − 7.23·12-s + 3.28·13-s + 4.69·14-s + 4.63·15-s + 2.66·16-s − 6.82·17-s − 1.64·18-s + 3.26·19-s − 9.10·20-s + 3.74·21-s + 1.58·22-s − 6.36·23-s + 8.14·24-s + 0.836·25-s − 7.87·26-s + 4.44·27-s − 7.35·28-s + ⋯
L(s)  = 1  − 1.69·2-s − 1.10·3-s + 1.88·4-s − 1.08·5-s + 1.88·6-s − 0.738·7-s − 1.50·8-s + 0.228·9-s + 1.83·10-s − 0.199·11-s − 2.08·12-s + 0.909·13-s + 1.25·14-s + 1.19·15-s + 0.665·16-s − 1.65·17-s − 0.387·18-s + 0.749·19-s − 2.03·20-s + 0.818·21-s + 0.338·22-s − 1.32·23-s + 1.66·24-s + 0.167·25-s − 1.54·26-s + 0.855·27-s − 1.39·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4001\)
Sign: $1$
Analytic conductor: \(31.9481\)
Root analytic conductor: \(5.65226\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4001,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.02167762121\)
\(L(\frac12)\) \(\approx\) \(0.02167762121\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad4001 \( 1+O(T) \)
good2 \( 1 + 2.40T + 2T^{2} \)
3 \( 1 + 1.91T + 3T^{2} \)
5 \( 1 + 2.41T + 5T^{2} \)
7 \( 1 + 1.95T + 7T^{2} \)
11 \( 1 + 0.661T + 11T^{2} \)
13 \( 1 - 3.28T + 13T^{2} \)
17 \( 1 + 6.82T + 17T^{2} \)
19 \( 1 - 3.26T + 19T^{2} \)
23 \( 1 + 6.36T + 23T^{2} \)
29 \( 1 + 1.41T + 29T^{2} \)
31 \( 1 + 3.18T + 31T^{2} \)
37 \( 1 - 5.91T + 37T^{2} \)
41 \( 1 - 0.877T + 41T^{2} \)
43 \( 1 - 4.37T + 43T^{2} \)
47 \( 1 + 10.3T + 47T^{2} \)
53 \( 1 + 6.93T + 53T^{2} \)
59 \( 1 + 7.14T + 59T^{2} \)
61 \( 1 - 2.14T + 61T^{2} \)
67 \( 1 + 11.2T + 67T^{2} \)
71 \( 1 - 7.19T + 71T^{2} \)
73 \( 1 + 9.65T + 73T^{2} \)
79 \( 1 + 0.353T + 79T^{2} \)
83 \( 1 - 0.410T + 83T^{2} \)
89 \( 1 - 1.94T + 89T^{2} \)
97 \( 1 + 12.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.378919540857101763320559956577, −7.88470502825955148664783176750, −7.11091019379693684521963196383, −6.37409685775846312107290616587, −5.96927901935104876037316008635, −4.69321758160890798030035128613, −3.79275514318568368338771059967, −2.70401507248788386120253968697, −1.42338319046344788177454802161, −0.11966607665734543396567789393, 0.11966607665734543396567789393, 1.42338319046344788177454802161, 2.70401507248788386120253968697, 3.79275514318568368338771059967, 4.69321758160890798030035128613, 5.96927901935104876037316008635, 6.37409685775846312107290616587, 7.11091019379693684521963196383, 7.88470502825955148664783176750, 8.378919540857101763320559956577

Graph of the $Z$-function along the critical line