L(s) = 1 | − 2.38·2-s + 1.02·3-s + 3.70·4-s − 0.691·5-s − 2.44·6-s + 1.59·7-s − 4.08·8-s − 1.95·9-s + 1.65·10-s − 3.76·11-s + 3.79·12-s − 6.60·13-s − 3.80·14-s − 0.708·15-s + 2.34·16-s − 3.52·17-s + 4.66·18-s + 8.47·19-s − 2.56·20-s + 1.62·21-s + 8.99·22-s − 5.10·23-s − 4.18·24-s − 4.52·25-s + 15.7·26-s − 5.06·27-s + 5.90·28-s + ⋯ |
L(s) = 1 | − 1.68·2-s + 0.591·3-s + 1.85·4-s − 0.309·5-s − 0.998·6-s + 0.601·7-s − 1.44·8-s − 0.650·9-s + 0.522·10-s − 1.13·11-s + 1.09·12-s − 1.83·13-s − 1.01·14-s − 0.182·15-s + 0.585·16-s − 0.854·17-s + 1.09·18-s + 1.94·19-s − 0.574·20-s + 0.355·21-s + 1.91·22-s − 1.06·23-s − 0.853·24-s − 0.904·25-s + 3.09·26-s − 0.975·27-s + 1.11·28-s + ⋯ |
Λ(s)=(=(4001s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4001s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.4596738341 |
L(21) |
≈ |
0.4596738341 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4001 | 1+O(T) |
good | 2 | 1+2.38T+2T2 |
| 3 | 1−1.02T+3T2 |
| 5 | 1+0.691T+5T2 |
| 7 | 1−1.59T+7T2 |
| 11 | 1+3.76T+11T2 |
| 13 | 1+6.60T+13T2 |
| 17 | 1+3.52T+17T2 |
| 19 | 1−8.47T+19T2 |
| 23 | 1+5.10T+23T2 |
| 29 | 1+2.57T+29T2 |
| 31 | 1−3.37T+31T2 |
| 37 | 1+1.47T+37T2 |
| 41 | 1+0.0916T+41T2 |
| 43 | 1+0.702T+43T2 |
| 47 | 1+10.1T+47T2 |
| 53 | 1−3.48T+53T2 |
| 59 | 1−11.3T+59T2 |
| 61 | 1−10.2T+61T2 |
| 67 | 1−3.97T+67T2 |
| 71 | 1−1.20T+71T2 |
| 73 | 1−10.3T+73T2 |
| 79 | 1−10.0T+79T2 |
| 83 | 1−11.1T+83T2 |
| 89 | 1−9.14T+89T2 |
| 97 | 1−4.87T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.202141795207500101542127120761, −7.959148048254098783632735897555, −7.50808428261452786644991940297, −6.70452050630646232558798158257, −5.46045807452741756238399519565, −4.86229373788120986367489356269, −3.47298285978335707288731362227, −2.42034670917199876563147372879, −2.06773402979457735084837880485, −0.45360298207032315644978397302,
0.45360298207032315644978397302, 2.06773402979457735084837880485, 2.42034670917199876563147372879, 3.47298285978335707288731362227, 4.86229373788120986367489356269, 5.46045807452741756238399519565, 6.70452050630646232558798158257, 7.50808428261452786644991940297, 7.959148048254098783632735897555, 8.202141795207500101542127120761