Properties

Label 2-4001-1.1-c1-0-25
Degree $2$
Conductor $4001$
Sign $1$
Analytic cond. $31.9481$
Root an. cond. $5.65226$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.66·2-s + 0.260·3-s + 5.11·4-s − 1.12·5-s − 0.695·6-s − 1.67·7-s − 8.29·8-s − 2.93·9-s + 3.01·10-s + 4.71·11-s + 1.33·12-s − 4.92·13-s + 4.45·14-s − 0.294·15-s + 11.9·16-s − 3.62·17-s + 7.81·18-s − 4.61·19-s − 5.77·20-s − 0.436·21-s − 12.5·22-s − 5.48·23-s − 2.16·24-s − 3.72·25-s + 13.1·26-s − 1.54·27-s − 8.54·28-s + ⋯
L(s)  = 1  − 1.88·2-s + 0.150·3-s + 2.55·4-s − 0.505·5-s − 0.284·6-s − 0.631·7-s − 2.93·8-s − 0.977·9-s + 0.952·10-s + 1.42·11-s + 0.384·12-s − 1.36·13-s + 1.19·14-s − 0.0760·15-s + 2.97·16-s − 0.878·17-s + 1.84·18-s − 1.05·19-s − 1.29·20-s − 0.0951·21-s − 2.67·22-s − 1.14·23-s − 0.441·24-s − 0.744·25-s + 2.57·26-s − 0.297·27-s − 1.61·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4001 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4001\)
Sign: $1$
Analytic conductor: \(31.9481\)
Root analytic conductor: \(5.65226\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4001,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1999016939\)
\(L(\frac12)\) \(\approx\) \(0.1999016939\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad4001 \( 1+O(T) \)
good2 \( 1 + 2.66T + 2T^{2} \)
3 \( 1 - 0.260T + 3T^{2} \)
5 \( 1 + 1.12T + 5T^{2} \)
7 \( 1 + 1.67T + 7T^{2} \)
11 \( 1 - 4.71T + 11T^{2} \)
13 \( 1 + 4.92T + 13T^{2} \)
17 \( 1 + 3.62T + 17T^{2} \)
19 \( 1 + 4.61T + 19T^{2} \)
23 \( 1 + 5.48T + 23T^{2} \)
29 \( 1 - 2.38T + 29T^{2} \)
31 \( 1 - 6.32T + 31T^{2} \)
37 \( 1 - 1.40T + 37T^{2} \)
41 \( 1 + 5.95T + 41T^{2} \)
43 \( 1 - 0.539T + 43T^{2} \)
47 \( 1 + 6.16T + 47T^{2} \)
53 \( 1 + 10.6T + 53T^{2} \)
59 \( 1 + 4.98T + 59T^{2} \)
61 \( 1 - 9.33T + 61T^{2} \)
67 \( 1 - 13.2T + 67T^{2} \)
71 \( 1 + 4.18T + 71T^{2} \)
73 \( 1 - 5.46T + 73T^{2} \)
79 \( 1 + 11.6T + 79T^{2} \)
83 \( 1 + 8.72T + 83T^{2} \)
89 \( 1 + 5.76T + 89T^{2} \)
97 \( 1 + 3.07T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.411170295814620286376469442647, −8.086644295221762940632406449189, −7.12577894682731818512084706481, −6.48126153975119537587426051900, −6.10146496931437306985216018841, −4.58295784213804151141113084065, −3.50875036982810636676698076405, −2.56505935219990341350092710298, −1.82522440949664043798225691645, −0.31732673065205618647713652731, 0.31732673065205618647713652731, 1.82522440949664043798225691645, 2.56505935219990341350092710298, 3.50875036982810636676698076405, 4.58295784213804151141113084065, 6.10146496931437306985216018841, 6.48126153975119537587426051900, 7.12577894682731818512084706481, 8.086644295221762940632406449189, 8.411170295814620286376469442647

Graph of the $Z$-function along the critical line