L(s) = 1 | − 0.892·2-s − 0.475·3-s − 1.20·4-s + 4.01·5-s + 0.424·6-s − 0.567·7-s + 2.85·8-s − 2.77·9-s − 3.58·10-s + 4.71·11-s + 0.571·12-s + 0.480·13-s + 0.506·14-s − 1.90·15-s − 0.146·16-s + 3.16·17-s + 2.47·18-s + 4.33·19-s − 4.82·20-s + 0.269·21-s − 4.20·22-s − 6.76·23-s − 1.35·24-s + 11.1·25-s − 0.429·26-s + 2.74·27-s + 0.683·28-s + ⋯ |
L(s) = 1 | − 0.631·2-s − 0.274·3-s − 0.601·4-s + 1.79·5-s + 0.173·6-s − 0.214·7-s + 1.01·8-s − 0.924·9-s − 1.13·10-s + 1.42·11-s + 0.164·12-s + 0.133·13-s + 0.135·14-s − 0.492·15-s − 0.0366·16-s + 0.767·17-s + 0.583·18-s + 0.994·19-s − 1.07·20-s + 0.0588·21-s − 0.897·22-s − 1.41·23-s − 0.277·24-s + 2.22·25-s − 0.0841·26-s + 0.527·27-s + 0.129·28-s + ⋯ |
Λ(s)=(=(4001s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4001s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.628517311 |
L(21) |
≈ |
1.628517311 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4001 | 1+O(T) |
good | 2 | 1+0.892T+2T2 |
| 3 | 1+0.475T+3T2 |
| 5 | 1−4.01T+5T2 |
| 7 | 1+0.567T+7T2 |
| 11 | 1−4.71T+11T2 |
| 13 | 1−0.480T+13T2 |
| 17 | 1−3.16T+17T2 |
| 19 | 1−4.33T+19T2 |
| 23 | 1+6.76T+23T2 |
| 29 | 1−8.94T+29T2 |
| 31 | 1−5.48T+31T2 |
| 37 | 1+8.35T+37T2 |
| 41 | 1−4.43T+41T2 |
| 43 | 1−0.890T+43T2 |
| 47 | 1+5.98T+47T2 |
| 53 | 1+3.04T+53T2 |
| 59 | 1−14.5T+59T2 |
| 61 | 1−0.262T+61T2 |
| 67 | 1+9.92T+67T2 |
| 71 | 1−14.4T+71T2 |
| 73 | 1−6.46T+73T2 |
| 79 | 1+6.44T+79T2 |
| 83 | 1−13.8T+83T2 |
| 89 | 1−6.07T+89T2 |
| 97 | 1+9.15T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.570315706786230204763785649959, −8.040103489708942037553867019680, −6.71107378256092318480917154091, −6.31582026540283134708967845712, −5.50284793320222838141876405299, −4.96969383370784598533531362607, −3.81635880675668823828951283942, −2.80537046324061186864941574385, −1.64221486042685238468882208153, −0.898501735722457882071198475256,
0.898501735722457882071198475256, 1.64221486042685238468882208153, 2.80537046324061186864941574385, 3.81635880675668823828951283942, 4.96969383370784598533531362607, 5.50284793320222838141876405299, 6.31582026540283134708967845712, 6.71107378256092318480917154091, 8.040103489708942037553867019680, 8.570315706786230204763785649959