L(s) = 1 | − 2.65·2-s + 3.05·3-s + 5.03·4-s − 1.94·5-s − 8.09·6-s + 2.48·7-s − 8.05·8-s + 6.32·9-s + 5.16·10-s − 2.94·11-s + 15.3·12-s + 0.192·13-s − 6.57·14-s − 5.94·15-s + 11.2·16-s + 4.76·17-s − 16.7·18-s − 2.90·19-s − 9.80·20-s + 7.57·21-s + 7.81·22-s − 3.08·23-s − 24.5·24-s − 1.20·25-s − 0.511·26-s + 10.1·27-s + 12.4·28-s + ⋯ |
L(s) = 1 | − 1.87·2-s + 1.76·3-s + 2.51·4-s − 0.870·5-s − 3.30·6-s + 0.937·7-s − 2.84·8-s + 2.10·9-s + 1.63·10-s − 0.887·11-s + 4.43·12-s + 0.0534·13-s − 1.75·14-s − 1.53·15-s + 2.82·16-s + 1.15·17-s − 3.95·18-s − 0.665·19-s − 2.19·20-s + 1.65·21-s + 1.66·22-s − 0.643·23-s − 5.01·24-s − 0.241·25-s − 0.100·26-s + 1.95·27-s + 2.36·28-s + ⋯ |
Λ(s)=(=(4001s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4001s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.459610613 |
L(21) |
≈ |
1.459610613 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4001 | 1+O(T) |
good | 2 | 1+2.65T+2T2 |
| 3 | 1−3.05T+3T2 |
| 5 | 1+1.94T+5T2 |
| 7 | 1−2.48T+7T2 |
| 11 | 1+2.94T+11T2 |
| 13 | 1−0.192T+13T2 |
| 17 | 1−4.76T+17T2 |
| 19 | 1+2.90T+19T2 |
| 23 | 1+3.08T+23T2 |
| 29 | 1−2.23T+29T2 |
| 31 | 1+3.07T+31T2 |
| 37 | 1−8.80T+37T2 |
| 41 | 1+2.72T+41T2 |
| 43 | 1−11.9T+43T2 |
| 47 | 1+4.38T+47T2 |
| 53 | 1−14.3T+53T2 |
| 59 | 1+3.28T+59T2 |
| 61 | 1−12.6T+61T2 |
| 67 | 1−4.80T+67T2 |
| 71 | 1−0.546T+71T2 |
| 73 | 1−4.67T+73T2 |
| 79 | 1+4.07T+79T2 |
| 83 | 1+0.610T+83T2 |
| 89 | 1−4.34T+89T2 |
| 97 | 1−6.32T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.331111545726193065909381543637, −7.87896403307605449118993726475, −7.69331017862882415660302103349, −6.93952125214061038864168182168, −5.70003410323752246182072924079, −4.33272955523060842528632013836, −3.47060429657680253241484636214, −2.53237219329637262450601707908, −1.97049841441310583514996062681, −0.847785723882046277594212611011,
0.847785723882046277594212611011, 1.97049841441310583514996062681, 2.53237219329637262450601707908, 3.47060429657680253241484636214, 4.33272955523060842528632013836, 5.70003410323752246182072924079, 6.93952125214061038864168182168, 7.69331017862882415660302103349, 7.87896403307605449118993726475, 8.331111545726193065909381543637