L(s) = 1 | − 1.22·2-s − 3.26·3-s − 0.507·4-s − 3.92·5-s + 3.99·6-s − 1.66·7-s + 3.06·8-s + 7.67·9-s + 4.79·10-s − 2.19·11-s + 1.65·12-s − 4.23·13-s + 2.03·14-s + 12.8·15-s − 2.72·16-s − 2.75·17-s − 9.38·18-s + 6.81·19-s + 1.99·20-s + 5.45·21-s + 2.67·22-s + 0.282·23-s − 10.0·24-s + 10.4·25-s + 5.17·26-s − 15.2·27-s + 0.845·28-s + ⋯ |
L(s) = 1 | − 0.863·2-s − 1.88·3-s − 0.253·4-s − 1.75·5-s + 1.63·6-s − 0.630·7-s + 1.08·8-s + 2.55·9-s + 1.51·10-s − 0.660·11-s + 0.478·12-s − 1.17·13-s + 0.544·14-s + 3.31·15-s − 0.682·16-s − 0.669·17-s − 2.21·18-s + 1.56·19-s + 0.445·20-s + 1.18·21-s + 0.570·22-s + 0.0588·23-s − 2.04·24-s + 2.08·25-s + 1.01·26-s − 2.94·27-s + 0.159·28-s + ⋯ |
Λ(s)=(=(4001s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4001s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.02088209983 |
L(21) |
≈ |
0.02088209983 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 4001 | 1+O(T) |
good | 2 | 1+1.22T+2T2 |
| 3 | 1+3.26T+3T2 |
| 5 | 1+3.92T+5T2 |
| 7 | 1+1.66T+7T2 |
| 11 | 1+2.19T+11T2 |
| 13 | 1+4.23T+13T2 |
| 17 | 1+2.75T+17T2 |
| 19 | 1−6.81T+19T2 |
| 23 | 1−0.282T+23T2 |
| 29 | 1+3.43T+29T2 |
| 31 | 1−9.87T+31T2 |
| 37 | 1−3.32T+37T2 |
| 41 | 1−4.80T+41T2 |
| 43 | 1+11.7T+43T2 |
| 47 | 1+8.15T+47T2 |
| 53 | 1+0.816T+53T2 |
| 59 | 1−3.51T+59T2 |
| 61 | 1+9.36T+61T2 |
| 67 | 1+11.8T+67T2 |
| 71 | 1+7.27T+71T2 |
| 73 | 1−11.5T+73T2 |
| 79 | 1+10.5T+79T2 |
| 83 | 1+7.05T+83T2 |
| 89 | 1+7.20T+89T2 |
| 97 | 1−7.79T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.214150284917944401006904090319, −7.62442275416012400805683043174, −7.15377489861792966154194359589, −6.46231846577106322552763331802, −5.27564382438385023740430952274, −4.74839881938934649240885321177, −4.21994267292475963353349162797, −3.06332789165973178934312861795, −1.19670373244097194793651251215, −0.12250324289815012062015376768,
0.12250324289815012062015376768, 1.19670373244097194793651251215, 3.06332789165973178934312861795, 4.21994267292475963353349162797, 4.74839881938934649240885321177, 5.27564382438385023740430952274, 6.46231846577106322552763331802, 7.15377489861792966154194359589, 7.62442275416012400805683043174, 8.214150284917944401006904090319