L(s) = 1 | + 6.89i·3-s + (−10.7 + 2.89i)5-s + 12.6i·7-s − 20.5·9-s + 59.1·11-s + 42.2i·13-s + (−20 − 74.4i)15-s − 126. i·17-s + 19.1·19-s − 87.5·21-s + 78.3i·23-s + (108. − 62.6i)25-s + 44.1i·27-s + 148.·29-s − 139.·31-s + ⋯ |
L(s) = 1 | + 1.32i·3-s + (−0.965 + 0.259i)5-s + 0.685i·7-s − 0.762·9-s + 1.62·11-s + 0.900i·13-s + (−0.344 − 1.28i)15-s − 1.80i·17-s + 0.231·19-s − 0.910·21-s + 0.709i·23-s + (0.865 − 0.500i)25-s + 0.314i·27-s + 0.950·29-s − 0.806·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 40 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.259 - 0.965i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.259 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.689485 + 0.899011i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.689485 + 0.899011i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (10.7 - 2.89i)T \) |
good | 3 | \( 1 - 6.89iT - 27T^{2} \) |
| 7 | \( 1 - 12.6iT - 343T^{2} \) |
| 11 | \( 1 - 59.1T + 1.33e3T^{2} \) |
| 13 | \( 1 - 42.2iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 126. iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 19.1T + 6.85e3T^{2} \) |
| 23 | \( 1 - 78.3iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 148.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 139.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 66.5iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 203.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 288. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 360. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 686. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 83.1T + 2.05e5T^{2} \) |
| 61 | \( 1 + 208.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 192. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 500.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 122. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 289.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 573. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 565.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 643. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.97765666141108400510730768198, −15.02728906019259127282902104567, −14.11791996426496532407792920388, −11.88210507024598909913707012283, −11.40042678631306457050497141872, −9.685639651378208100840735886915, −8.862201353506884773633177360891, −6.91109308591638454018750009951, −4.82266239270148470286545803042, −3.54492742207040441089086225937,
1.10271753024097661636281778025, 3.93459838131123858317257446246, 6.39672957087295814508491037584, 7.53219239950439294717541199492, 8.606053448484959275163106501689, 10.68580998390805873617843002480, 12.09991878963809816989025226053, 12.71976905285300376393999388642, 14.03466050130665747156475556107, 15.19126786529019228477464338302