L(s) = 1 | + (1.35 − 2.34i)2-s + (−2.65 − 4.60i)4-s + (−0.836 − 1.44i)5-s + (−0.250 + 0.433i)7-s − 8.97·8-s − 4.52·10-s + (−0.958 + 1.66i)11-s + (−1.55 − 2.69i)13-s + (0.677 + 1.17i)14-s + (−6.81 + 11.8i)16-s − 2.66·17-s + 5.79·19-s + (−4.44 + 7.70i)20-s + (2.59 + 4.49i)22-s + (−2.32 − 4.02i)23-s + ⋯ |
L(s) = 1 | + (0.956 − 1.65i)2-s + (−1.32 − 2.30i)4-s + (−0.373 − 0.647i)5-s + (−0.0946 + 0.163i)7-s − 3.17·8-s − 1.43·10-s + (−0.289 + 0.500i)11-s + (−0.431 − 0.747i)13-s + (0.180 + 0.313i)14-s + (−1.70 + 2.95i)16-s − 0.646·17-s + 1.32·19-s + (−0.994 + 1.72i)20-s + (0.552 + 0.957i)22-s + (−0.484 − 0.838i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.500 - 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.500 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.747064 + 1.29395i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.747064 + 1.29395i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-1.35 + 2.34i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.836 + 1.44i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.250 - 0.433i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.958 - 1.66i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.55 + 2.69i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 2.66T + 17T^{2} \) |
| 19 | \( 1 - 5.79T + 19T^{2} \) |
| 23 | \( 1 + (2.32 + 4.02i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.30 - 2.26i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.30 - 3.99i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4.85T + 37T^{2} \) |
| 41 | \( 1 + (5.77 + 10.0i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.50 + 7.79i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.41 + 5.91i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 5.43T + 53T^{2} \) |
| 59 | \( 1 + (1.09 + 1.89i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.42 - 5.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.24 + 10.8i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2.83T + 71T^{2} \) |
| 73 | \( 1 - 9.93T + 73T^{2} \) |
| 79 | \( 1 + (2.65 - 4.59i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.36 - 2.36i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 11.2T + 89T^{2} \) |
| 97 | \( 1 + (-3.44 + 5.96i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.27086691434518606803163081456, −9.232670904468107592741617810586, −8.507788649532487056626329566610, −7.08667293413932165639663095839, −5.61521187765818526932136475598, −5.00966455634420113630033064195, −4.14559436196107555919402250759, −3.09648674052432573159586412908, −2.05655809411473315253779068792, −0.55846019360582081506188357467,
2.93538699010000698528484654027, 3.83559741852335127559746048194, 4.79712775371049880404924140566, 5.74812210581056797440445533222, 6.58877199728467454025855925483, 7.36188480129248954172188767337, 7.88346303467801368355391303010, 8.947180449184345585037134674154, 9.821682167225457503109078548267, 11.33964725410735285942846356982