L(s) = 1 | + (0.642 − 1.11i)2-s + (0.173 + 0.300i)4-s + (0.223 + 0.386i)5-s + (1.76 − 3.05i)7-s + 3.01·8-s + 0.573·10-s + (−1.39 + 2.40i)11-s + (−1.64 − 2.84i)13-s + (−2.27 − 3.93i)14-s + (1.59 − 2.75i)16-s + 7.03·17-s − 5.18·19-s + (−0.0775 + 0.134i)20-s + (1.78 + 3.09i)22-s + (3.63 + 6.30i)23-s + ⋯ |
L(s) = 1 | + (0.454 − 0.787i)2-s + (0.0868 + 0.150i)4-s + (0.0998 + 0.172i)5-s + (0.667 − 1.15i)7-s + 1.06·8-s + 0.181·10-s + (−0.419 + 0.725i)11-s + (−0.456 − 0.790i)13-s + (−0.606 − 1.05i)14-s + (0.398 − 0.689i)16-s + 1.70·17-s − 1.18·19-s + (−0.0173 + 0.0300i)20-s + (0.380 + 0.659i)22-s + (0.758 + 1.31i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.02421 - 1.16867i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.02421 - 1.16867i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-0.642 + 1.11i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.223 - 0.386i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.76 + 3.05i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.39 - 2.40i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.64 + 2.84i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 7.03T + 17T^{2} \) |
| 19 | \( 1 + 5.18T + 19T^{2} \) |
| 23 | \( 1 + (-3.63 - 6.30i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.80 + 3.13i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.967 - 1.67i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 3.22T + 37T^{2} \) |
| 41 | \( 1 + (2.43 + 4.20i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.87 + 4.98i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.50 + 2.61i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 8.77T + 53T^{2} \) |
| 59 | \( 1 + (-1.48 - 2.56i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.94 - 6.83i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.71 - 8.17i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.30T + 71T^{2} \) |
| 73 | \( 1 + 1.55T + 73T^{2} \) |
| 79 | \( 1 + (-5.95 + 10.3i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (8.12 - 14.0i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 18.4T + 89T^{2} \) |
| 97 | \( 1 + (5.05 - 8.75i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.40324236031735321070997655530, −9.931013857891255918488055203597, −8.314005470712801678731825579230, −7.56969896090175983149949327449, −7.04409263333432017851667769239, −5.43792992110852336496678327914, −4.56298613049790543596058773064, −3.64940731605354518447549802817, −2.58991793415285694948798626767, −1.28206134066438379642344795401,
1.57585044773283256261531834619, 2.89137451273538796769237969400, 4.58442401604163019246432737048, 5.23166751522657918709639701759, 6.00121395096607597102662754885, 6.84513785720443748805156969872, 7.962572838776888889686761619189, 8.577390586547842847146894301118, 9.579991370689528839309761401169, 10.66206655024826191702902918901