L(s) = 1 | + (−1.20 + 2.07i)2-s + (−1.88 − 3.26i)4-s + (0.0465 + 0.0806i)5-s + (0.289 − 0.502i)7-s + 4.24·8-s − 0.223·10-s + (−1.54 + 2.67i)11-s + (−2.10 − 3.63i)13-s + (0.696 + 1.20i)14-s + (−1.33 + 2.30i)16-s + 1.99·17-s − 3.84·19-s + (0.175 − 0.303i)20-s + (−3.71 − 6.43i)22-s + (−2.22 − 3.85i)23-s + ⋯ |
L(s) = 1 | + (−0.849 + 1.47i)2-s + (−0.941 − 1.63i)4-s + (0.0208 + 0.0360i)5-s + (0.109 − 0.189i)7-s + 1.50·8-s − 0.0706·10-s + (−0.466 + 0.807i)11-s + (−0.582 − 1.00i)13-s + (0.186 + 0.322i)14-s + (−0.332 + 0.576i)16-s + 0.482·17-s − 0.882·19-s + (0.0392 − 0.0679i)20-s + (−0.791 − 1.37i)22-s + (−0.464 − 0.804i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.603867\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.603867\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (1.20 - 2.07i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.0465 - 0.0806i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.289 + 0.502i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.54 - 2.67i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.10 + 3.63i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 1.99T + 17T^{2} \) |
| 19 | \( 1 + 3.84T + 19T^{2} \) |
| 23 | \( 1 + (2.22 + 3.85i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.19 + 5.54i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.828 + 1.43i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.03T + 37T^{2} \) |
| 41 | \( 1 + (0.548 + 0.949i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.45 + 5.97i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.79 + 3.11i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 5.40T + 53T^{2} \) |
| 59 | \( 1 + (5.14 + 8.90i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.59 + 11.4i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.41 - 7.65i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 1.14T + 71T^{2} \) |
| 73 | \( 1 - 0.195T + 73T^{2} \) |
| 79 | \( 1 + (-3.60 + 6.24i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.45 - 12.9i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 1.55T + 89T^{2} \) |
| 97 | \( 1 + (2.64 - 4.58i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12831450288122739485537844272, −9.459259842493886844688501950404, −8.250221282168666201872279093508, −7.949521347427938508861972190179, −7.00434444644553379930971191220, −6.20811320682108828695295725966, −5.27192762072521682469495561397, −4.35874085488898620415718210678, −2.47750109491600768040023954805, −0.44545804738154694529083231860,
1.31923929196191333655543787689, 2.50251305211539350673646755801, 3.46146775822478352731439427526, 4.60894590856397283668272401636, 5.88009514516183206321319539418, 7.22068833088997890154844146105, 8.216649055259409269275467491328, 8.937948987531248722008983797847, 9.601705930137132532754475457162, 10.48495290685106525914553824753