L(s) = 1 | + (−0.388 + 0.673i)2-s + (0.697 + 1.20i)4-s + (−1.18 − 2.05i)5-s + (1.25 − 2.16i)7-s − 2.64·8-s + 1.84·10-s + (−1.57 + 2.72i)11-s + (−0.668 − 1.15i)13-s + (0.972 + 1.68i)14-s + (−0.368 + 0.637i)16-s + 6.27·17-s + 8.06·19-s + (1.65 − 2.87i)20-s + (−1.22 − 2.11i)22-s + (−2.02 − 3.51i)23-s + ⋯ |
L(s) = 1 | + (−0.274 + 0.476i)2-s + (0.348 + 0.604i)4-s + (−0.531 − 0.920i)5-s + (0.472 − 0.818i)7-s − 0.933·8-s + 0.584·10-s + (−0.473 + 0.820i)11-s + (−0.185 − 0.321i)13-s + (0.259 + 0.450i)14-s + (−0.0920 + 0.159i)16-s + 1.52·17-s + 1.85·19-s + (0.370 − 0.642i)20-s + (−0.260 − 0.451i)22-s + (−0.422 − 0.732i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.33535\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.33535\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.388 - 0.673i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.18 + 2.05i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.25 + 2.16i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.57 - 2.72i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.668 + 1.15i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 6.27T + 17T^{2} \) |
| 19 | \( 1 - 8.06T + 19T^{2} \) |
| 23 | \( 1 + (2.02 + 3.51i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.64 + 8.04i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.41 + 2.45i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.53T + 37T^{2} \) |
| 41 | \( 1 + (-3.55 - 6.15i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.16 - 2.02i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.30 + 3.99i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 0.135T + 53T^{2} \) |
| 59 | \( 1 + (-1.99 - 3.46i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.170 - 0.296i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5.06 + 8.76i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 8.19T + 71T^{2} \) |
| 73 | \( 1 + 12.3T + 73T^{2} \) |
| 79 | \( 1 + (2.04 - 3.53i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (0.456 - 0.790i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 3.72T + 89T^{2} \) |
| 97 | \( 1 + (-2.99 + 5.19i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17215061917072289012461146074, −9.537640536794665421847928957509, −8.273862793842636761638912789584, −7.74554030972477484411307263097, −7.38609771380006485687486065108, −6.00301419852021267227880711350, −4.90463088935125427207128410992, −4.02646366980954968539104873945, −2.77988233808895844721951262178, −0.904576978184203258710874057489,
1.27366781146112692728748362775, 2.79088006352780943250900595982, 3.37238969029074383001250513887, 5.31764060693529762002078879341, 5.72302815693358956064591453170, 7.02778809174937824155214490060, 7.74660828152495639894381506681, 8.825569018312267029977458309378, 9.711369530476941186745967251336, 10.48497674859837223805207249839