L(s) = 1 | + (−0.342 + 0.592i)2-s + (0.766 + 1.32i)4-s + (−0.524 − 0.907i)5-s + (0.0603 − 0.104i)7-s − 2.41·8-s + 0.716·10-s + (2.71 − 4.70i)11-s + (2.28 + 3.96i)13-s + (0.0412 + 0.0714i)14-s + (−0.705 + 1.22i)16-s + 4.77·17-s − 0.588·19-s + (0.802 − 1.39i)20-s + (1.85 + 3.21i)22-s + (3.89 + 6.75i)23-s + ⋯ |
L(s) = 1 | + (−0.241 + 0.418i)2-s + (0.383 + 0.663i)4-s + (−0.234 − 0.405i)5-s + (0.0227 − 0.0394i)7-s − 0.854·8-s + 0.226·10-s + (0.819 − 1.41i)11-s + (0.634 + 1.09i)13-s + (0.0110 + 0.0190i)14-s + (−0.176 + 0.305i)16-s + 1.15·17-s − 0.135·19-s + (0.179 − 0.310i)20-s + (0.396 + 0.686i)22-s + (0.812 + 1.40i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.5 - 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.29406 + 0.747127i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.29406 + 0.747127i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.342 - 0.592i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (0.524 + 0.907i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.0603 + 0.104i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.71 + 4.70i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.28 - 3.96i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 4.77T + 17T^{2} \) |
| 19 | \( 1 + 0.588T + 19T^{2} \) |
| 23 | \( 1 + (-3.89 - 6.75i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.53 - 4.39i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-4.37 - 7.58i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.18T + 37T^{2} \) |
| 41 | \( 1 + (3.77 + 6.54i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.652 + 1.13i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.20 - 2.09i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 3.04T + 53T^{2} \) |
| 59 | \( 1 + (-0.0219 - 0.0380i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.10 + 8.84i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.929 - 1.61i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.51T + 71T^{2} \) |
| 73 | \( 1 - 12.2T + 73T^{2} \) |
| 79 | \( 1 + (0.351 - 0.608i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.38 - 5.86i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6.85T + 89T^{2} \) |
| 97 | \( 1 + (-4.51 + 7.81i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69208643340930121438330703277, −9.241885573846309872048818858980, −8.779900298627804750673601280447, −8.055880316302954206645128614632, −7.01998431091000527691547014722, −6.33029287280425891603446972095, −5.29618923388364694651834341513, −3.82069728390806179057060531020, −3.20090265300473896796910375043, −1.30813519505957701374671381589,
1.02574998402616349812769196243, 2.37131374196383314022431500510, 3.48835037150359703236603631012, 4.79931979802666293658113821863, 5.89966664585771753991330664136, 6.71716306124590338692013011834, 7.59086985719870969248976549121, 8.663892871006053536188110054920, 9.749632475432784483770037580589, 10.15476381245971990395813852551