L(s) = 1 | + (−0.0864 − 0.149i)2-s + (0.985 − 1.70i)4-s + (1.86 − 3.23i)5-s + (−1.51 − 2.62i)7-s − 0.686·8-s − 0.646·10-s + (1.24 + 2.15i)11-s + (0.382 − 0.662i)13-s + (−0.262 + 0.454i)14-s + (−1.91 − 3.30i)16-s + 4.62·17-s − 0.611·19-s + (−3.68 − 6.37i)20-s + (0.215 − 0.373i)22-s + (−3.26 + 5.65i)23-s + ⋯ |
L(s) = 1 | + (−0.0611 − 0.105i)2-s + (0.492 − 0.853i)4-s + (0.835 − 1.44i)5-s + (−0.572 − 0.992i)7-s − 0.242·8-s − 0.204·10-s + (0.375 + 0.650i)11-s + (0.106 − 0.183i)13-s + (−0.0700 + 0.121i)14-s + (−0.477 − 0.827i)16-s + 1.12·17-s − 0.140·19-s + (−0.823 − 1.42i)20-s + (0.0459 − 0.0795i)22-s + (−0.680 + 1.17i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.500 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.500 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.882073 - 1.52779i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.882073 - 1.52779i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.0864 + 0.149i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.86 + 3.23i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (1.51 + 2.62i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.24 - 2.15i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.382 + 0.662i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 4.62T + 17T^{2} \) |
| 19 | \( 1 + 0.611T + 19T^{2} \) |
| 23 | \( 1 + (3.26 - 5.65i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.27 - 5.67i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.27 - 5.67i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 4.95T + 37T^{2} \) |
| 41 | \( 1 + (2.63 - 4.55i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.78 + 4.82i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.553 + 0.959i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 8.84T + 53T^{2} \) |
| 59 | \( 1 + (-5.92 + 10.2i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.09 + 7.09i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.606 + 1.04i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.91T + 71T^{2} \) |
| 73 | \( 1 - 4.29T + 73T^{2} \) |
| 79 | \( 1 + (-5.89 - 10.2i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.50 + 7.80i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 7.53T + 89T^{2} \) |
| 97 | \( 1 + (-0.474 - 0.821i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.849778887314237430323414115794, −9.655895967046183926004748314230, −8.578544990141122950620827185796, −7.38313321482062038725649296489, −6.49326291126725986202412432073, −5.53087849534545741345384266974, −4.87779745470513943072470737667, −3.55273454906528791511073743874, −1.79351611327971733277131532124, −0.967272969664452184742312483763,
2.31203922840097218731575869544, 2.87362636714463341065238374735, 3.88992057776074333978046307748, 5.94420611261581653739615773665, 6.12127444988488684115016865512, 7.06975493277365310941344681912, 8.038502257320591989183560600634, 8.971742566463710308051226357943, 9.889663377561520303886286753164, 10.62242596326873910728596521555