L(s) = 1 | + (−1.06 − 1.84i)2-s + (−1.25 + 2.17i)4-s + (−1.03 + 1.79i)5-s + (−2.42 − 4.19i)7-s + 1.09·8-s + 4.40·10-s + (2.07 + 3.59i)11-s + (0.608 − 1.05i)13-s + (−5.15 + 8.92i)14-s + (1.35 + 2.34i)16-s − 2.36·17-s − 1.83·19-s + (−2.60 − 4.51i)20-s + (4.40 − 7.63i)22-s + (−2.15 + 3.72i)23-s + ⋯ |
L(s) = 1 | + (−0.751 − 1.30i)2-s + (−0.628 + 1.08i)4-s + (−0.463 + 0.802i)5-s + (−0.916 − 1.58i)7-s + 0.387·8-s + 1.39·10-s + (0.625 + 1.08i)11-s + (0.168 − 0.292i)13-s + (−1.37 + 2.38i)14-s + (0.337 + 0.585i)16-s − 0.573·17-s − 0.421·19-s + (−0.582 − 1.00i)20-s + (0.939 − 1.62i)22-s + (−0.448 + 0.777i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.535249\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.535249\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (1.06 + 1.84i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (1.03 - 1.79i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2.42 + 4.19i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.07 - 3.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.608 + 1.05i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 2.36T + 17T^{2} \) |
| 19 | \( 1 + 1.83T + 19T^{2} \) |
| 23 | \( 1 + (2.15 - 3.72i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.49 - 2.58i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.736 - 1.27i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 8.97T + 37T^{2} \) |
| 41 | \( 1 + (-1.13 + 1.95i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.74 - 4.75i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.59 - 6.22i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6.32T + 53T^{2} \) |
| 59 | \( 1 + (-0.131 + 0.227i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.22 - 3.85i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.06 - 3.57i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 3.08T + 71T^{2} \) |
| 73 | \( 1 - 12.7T + 73T^{2} \) |
| 79 | \( 1 + (2.27 + 3.94i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.22 + 7.32i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 16.9T + 89T^{2} \) |
| 97 | \( 1 + (-2.55 - 4.42i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46697662460315926745750134671, −9.781029129285543846674080160120, −9.129481977078202969815881591821, −7.78809170434363581614664555055, −7.10339606973433615431088800724, −6.29281645361653806465164054116, −4.25328526590342178884735285562, −3.68178327341010548873269318544, −2.65357760676528232762852293544, −1.15042868295493676050340453188,
0.41377968883626438970417442863, 2.63038763361332788757034121486, 4.11869877639348603431642193830, 5.46916428547636436435598129909, 6.15048710348385393118248210216, 6.72353934848757070520486989993, 8.134234329876681190615490924062, 8.645978490830257782600395183818, 9.062881274745307957290512233194, 9.868401371028462071416150527083