L(s) = 1 | + (−0.840 − 1.45i)2-s + (−0.412 + 0.714i)4-s + (0.564 − 0.978i)5-s + (1.95 + 3.38i)7-s − 1.97·8-s − 1.89·10-s + (0.935 + 1.61i)11-s + (0.366 − 0.634i)13-s + (3.28 − 5.69i)14-s + (2.48 + 4.30i)16-s + 1.88·17-s + 2.74·19-s + (0.466 + 0.807i)20-s + (1.57 − 2.72i)22-s + (2.91 − 5.04i)23-s + ⋯ |
L(s) = 1 | + (−0.594 − 1.02i)2-s + (−0.206 + 0.357i)4-s + (0.252 − 0.437i)5-s + (0.738 + 1.27i)7-s − 0.698·8-s − 0.600·10-s + (0.281 + 0.488i)11-s + (0.101 − 0.175i)13-s + (0.878 − 1.52i)14-s + (0.621 + 1.07i)16-s + 0.458·17-s + 0.629·19-s + (0.104 + 0.180i)20-s + (0.335 − 0.580i)22-s + (0.607 − 1.05i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12684 - 0.650582i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12684 - 0.650582i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.840 + 1.45i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-0.564 + 0.978i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.95 - 3.38i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.935 - 1.61i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.366 + 0.634i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 1.88T + 17T^{2} \) |
| 19 | \( 1 - 2.74T + 19T^{2} \) |
| 23 | \( 1 + (-2.91 + 5.04i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.65 - 4.60i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.670 - 1.16i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.39T + 37T^{2} \) |
| 41 | \( 1 + (0.898 - 1.55i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.51 + 4.35i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.854 + 1.47i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 2.84T + 53T^{2} \) |
| 59 | \( 1 + (-5.63 + 9.75i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.61 + 4.53i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.944 + 1.63i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 12.1T + 71T^{2} \) |
| 73 | \( 1 - 9.88T + 73T^{2} \) |
| 79 | \( 1 + (6.17 + 10.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.84 - 10.1i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 5.72T + 89T^{2} \) |
| 97 | \( 1 + (-0.171 - 0.297i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.26635452831357455911990453036, −9.349477473847513223242891120768, −8.854265213611907400628314148395, −8.102593594095234096503575474307, −6.72242724291298571330853392978, −5.57415222381042263918390414393, −4.89277301752572464981850662071, −3.25752156138132276717629517140, −2.21782955143084303662489989591, −1.21746995324517052354198969529,
1.05191670232996038524504172276, 2.98433430494727650872659411881, 4.16256198225971190840955519336, 5.44385355048056090781081311688, 6.38148246013224448877930371428, 7.22007931936271794938116116092, 7.76052302938527436023354194117, 8.591691570744689237358875564298, 9.588358822247405588201080828730, 10.33890101445594633389165357019