L(s) = 1 | + (1.29 − 0.848i)2-s + (0.152 − 0.354i)4-s + (−0.349 + 0.370i)5-s + (−3.96 − 0.463i)7-s + (0.432 + 2.45i)8-s + (−0.136 + 0.774i)10-s + (−1.09 + 3.66i)11-s + (−0.181 + 3.10i)13-s + (−5.50 + 2.76i)14-s + (3.17 + 3.36i)16-s + (1.41 − 0.513i)17-s + (6.30 + 2.29i)19-s + (0.0778 + 0.180i)20-s + (1.69 + 5.66i)22-s + (−1.17 + 0.137i)23-s + ⋯ |
L(s) = 1 | + (0.912 − 0.600i)2-s + (0.0764 − 0.177i)4-s + (−0.156 + 0.165i)5-s + (−1.49 − 0.175i)7-s + (0.153 + 0.868i)8-s + (−0.0431 + 0.244i)10-s + (−0.331 + 1.10i)11-s + (−0.0502 + 0.862i)13-s + (−1.47 + 0.738i)14-s + (0.793 + 0.840i)16-s + (0.342 − 0.124i)17-s + (1.44 + 0.526i)19-s + (0.0173 + 0.0403i)20-s + (0.361 + 1.20i)22-s + (−0.245 + 0.0287i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.328 - 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.328 - 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.25385 + 0.891891i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.25385 + 0.891891i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-1.29 + 0.848i)T + (0.792 - 1.83i)T^{2} \) |
| 5 | \( 1 + (0.349 - 0.370i)T + (-0.290 - 4.99i)T^{2} \) |
| 7 | \( 1 + (3.96 + 0.463i)T + (6.81 + 1.61i)T^{2} \) |
| 11 | \( 1 + (1.09 - 3.66i)T + (-9.19 - 6.04i)T^{2} \) |
| 13 | \( 1 + (0.181 - 3.10i)T + (-12.9 - 1.50i)T^{2} \) |
| 17 | \( 1 + (-1.41 + 0.513i)T + (13.0 - 10.9i)T^{2} \) |
| 19 | \( 1 + (-6.30 - 2.29i)T + (14.5 + 12.2i)T^{2} \) |
| 23 | \( 1 + (1.17 - 0.137i)T + (22.3 - 5.30i)T^{2} \) |
| 29 | \( 1 + (6.17 + 3.10i)T + (17.3 + 23.2i)T^{2} \) |
| 31 | \( 1 + (0.0276 + 0.0371i)T + (-8.89 + 29.6i)T^{2} \) |
| 37 | \( 1 + (2.33 + 1.96i)T + (6.42 + 36.4i)T^{2} \) |
| 41 | \( 1 + (4.96 + 3.26i)T + (16.2 + 37.6i)T^{2} \) |
| 43 | \( 1 + (-0.231 + 0.0549i)T + (38.4 - 19.2i)T^{2} \) |
| 47 | \( 1 + (-2.82 + 3.80i)T + (-13.4 - 45.0i)T^{2} \) |
| 53 | \( 1 + (6.81 - 11.7i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (0.400 + 1.33i)T + (-49.2 + 32.4i)T^{2} \) |
| 61 | \( 1 + (0.124 + 0.288i)T + (-41.8 + 44.3i)T^{2} \) |
| 67 | \( 1 + (-4.90 + 2.46i)T + (40.0 - 53.7i)T^{2} \) |
| 71 | \( 1 + (-2.03 + 11.5i)T + (-66.7 - 24.2i)T^{2} \) |
| 73 | \( 1 + (-2.70 - 15.3i)T + (-68.5 + 24.9i)T^{2} \) |
| 79 | \( 1 + (-11.6 + 7.69i)T + (31.2 - 72.5i)T^{2} \) |
| 83 | \( 1 + (-0.587 + 0.386i)T + (32.8 - 76.2i)T^{2} \) |
| 89 | \( 1 + (2.00 + 11.3i)T + (-83.6 + 30.4i)T^{2} \) |
| 97 | \( 1 + (-8.92 - 9.46i)T + (-5.64 + 96.8i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65644944207629599352161720903, −9.737719162925162164225253186371, −9.208400096091682662963663396899, −7.69921949862425676379992700587, −7.09889789050897175833865326470, −5.91896794965763266574886765707, −4.97923517197411852794173029742, −3.82478444229656948492862939104, −3.25672748982893899122363383509, −2.00960465923601191135010000849,
0.58057922962240399209997424250, 3.09968287009453208064166035050, 3.56487943771476065912798403413, 5.04427329384364615022335524032, 5.73106584060197232666011093092, 6.44392587089160686989988127641, 7.35798586946739474871278331126, 8.386307780794884907735364972392, 9.534974743201309623012434447001, 10.04027921671883791455454788097