Properties

Label 2-3e6-81.67-c1-0-11
Degree $2$
Conductor $729$
Sign $-0.0419 - 0.999i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.695 + 0.457i)2-s + (−0.517 + 1.19i)4-s + (0.827 − 0.877i)5-s + (1.30 + 0.152i)7-s + (−0.478 − 2.71i)8-s + (−0.174 + 0.989i)10-s + (−0.623 + 2.08i)11-s + (−0.264 + 4.54i)13-s + (−0.978 + 0.491i)14-s + (−0.218 − 0.231i)16-s + (3.54 − 1.28i)17-s + (−2.50 − 0.911i)19-s + (0.623 + 1.44i)20-s + (−0.519 − 1.73i)22-s + (5.99 − 0.700i)23-s + ⋯
L(s)  = 1  + (−0.492 + 0.323i)2-s + (−0.258 + 0.599i)4-s + (0.370 − 0.392i)5-s + (0.493 + 0.0576i)7-s + (−0.169 − 0.958i)8-s + (−0.0551 + 0.312i)10-s + (−0.187 + 0.627i)11-s + (−0.0734 + 1.26i)13-s + (−0.261 + 0.131i)14-s + (−0.0545 − 0.0578i)16-s + (0.859 − 0.312i)17-s + (−0.574 − 0.209i)19-s + (0.139 + 0.323i)20-s + (−0.110 − 0.369i)22-s + (1.24 − 0.146i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0419 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0419 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $-0.0419 - 0.999i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (28, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ -0.0419 - 0.999i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.769692 + 0.802654i\)
\(L(\frac12)\) \(\approx\) \(0.769692 + 0.802654i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (0.695 - 0.457i)T + (0.792 - 1.83i)T^{2} \)
5 \( 1 + (-0.827 + 0.877i)T + (-0.290 - 4.99i)T^{2} \)
7 \( 1 + (-1.30 - 0.152i)T + (6.81 + 1.61i)T^{2} \)
11 \( 1 + (0.623 - 2.08i)T + (-9.19 - 6.04i)T^{2} \)
13 \( 1 + (0.264 - 4.54i)T + (-12.9 - 1.50i)T^{2} \)
17 \( 1 + (-3.54 + 1.28i)T + (13.0 - 10.9i)T^{2} \)
19 \( 1 + (2.50 + 0.911i)T + (14.5 + 12.2i)T^{2} \)
23 \( 1 + (-5.99 + 0.700i)T + (22.3 - 5.30i)T^{2} \)
29 \( 1 + (3.71 + 1.86i)T + (17.3 + 23.2i)T^{2} \)
31 \( 1 + (-4.45 - 5.98i)T + (-8.89 + 29.6i)T^{2} \)
37 \( 1 + (-7.47 - 6.27i)T + (6.42 + 36.4i)T^{2} \)
41 \( 1 + (4.83 + 3.18i)T + (16.2 + 37.6i)T^{2} \)
43 \( 1 + (4.91 - 1.16i)T + (38.4 - 19.2i)T^{2} \)
47 \( 1 + (1.79 - 2.40i)T + (-13.4 - 45.0i)T^{2} \)
53 \( 1 + (6.22 - 10.7i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-3.12 - 10.4i)T + (-49.2 + 32.4i)T^{2} \)
61 \( 1 + (-4.67 - 10.8i)T + (-41.8 + 44.3i)T^{2} \)
67 \( 1 + (0.741 - 0.372i)T + (40.0 - 53.7i)T^{2} \)
71 \( 1 + (-1.25 + 7.14i)T + (-66.7 - 24.2i)T^{2} \)
73 \( 1 + (1.41 + 7.99i)T + (-68.5 + 24.9i)T^{2} \)
79 \( 1 + (-9.60 + 6.31i)T + (31.2 - 72.5i)T^{2} \)
83 \( 1 + (-3.98 + 2.62i)T + (32.8 - 76.2i)T^{2} \)
89 \( 1 + (-0.578 - 3.28i)T + (-83.6 + 30.4i)T^{2} \)
97 \( 1 + (0.935 + 0.991i)T + (-5.64 + 96.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.39866860411277905028590782371, −9.428166395493983655475565059753, −8.999521938658439667137488230644, −8.063462442137681841571212293128, −7.25434241978419586457446543519, −6.47110917188335458401812339919, −5.04607756854869082952125339626, −4.37581457057526528957534418661, −2.99436095791601570557332654044, −1.44739878680172529949079065824, 0.74994051729090089979512670448, 2.16552236793342143707347403325, 3.36674470801726654692452556625, 4.93328146465046152282389508011, 5.64125106126854418519816065260, 6.51875519300748220679535576195, 8.002437336742166021128628054886, 8.333708364739405165206714982176, 9.615776064359737805950256525130, 10.09158284103367380661978582178

Graph of the $Z$-function along the critical line