Properties

Label 2-3e6-81.52-c1-0-2
Degree $2$
Conductor $729$
Sign $0.183 - 0.982i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.81 − 1.19i)2-s + (1.08 + 2.51i)4-s + (−0.443 − 0.470i)5-s + (1.81 − 0.212i)7-s + (0.277 − 1.57i)8-s + (0.244 + 1.38i)10-s + (0.346 + 1.15i)11-s + (0.310 + 5.32i)13-s + (−3.55 − 1.78i)14-s + (1.36 − 1.44i)16-s + (−6.43 − 2.34i)17-s + (−5.97 + 2.17i)19-s + (0.700 − 1.62i)20-s + (0.754 − 2.52i)22-s + (3.09 + 0.361i)23-s + ⋯
L(s)  = 1  + (−1.28 − 0.845i)2-s + (0.541 + 1.25i)4-s + (−0.198 − 0.210i)5-s + (0.686 − 0.0802i)7-s + (0.0980 − 0.556i)8-s + (0.0772 + 0.438i)10-s + (0.104 + 0.349i)11-s + (0.0860 + 1.47i)13-s + (−0.950 − 0.477i)14-s + (0.341 − 0.362i)16-s + (−1.56 − 0.567i)17-s + (−1.37 + 0.499i)19-s + (0.156 − 0.362i)20-s + (0.160 − 0.537i)22-s + (0.645 + 0.0754i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.183 - 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.183 - 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $0.183 - 0.982i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (703, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ 0.183 - 0.982i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.249339 + 0.207010i\)
\(L(\frac12)\) \(\approx\) \(0.249339 + 0.207010i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (1.81 + 1.19i)T + (0.792 + 1.83i)T^{2} \)
5 \( 1 + (0.443 + 0.470i)T + (-0.290 + 4.99i)T^{2} \)
7 \( 1 + (-1.81 + 0.212i)T + (6.81 - 1.61i)T^{2} \)
11 \( 1 + (-0.346 - 1.15i)T + (-9.19 + 6.04i)T^{2} \)
13 \( 1 + (-0.310 - 5.32i)T + (-12.9 + 1.50i)T^{2} \)
17 \( 1 + (6.43 + 2.34i)T + (13.0 + 10.9i)T^{2} \)
19 \( 1 + (5.97 - 2.17i)T + (14.5 - 12.2i)T^{2} \)
23 \( 1 + (-3.09 - 0.361i)T + (22.3 + 5.30i)T^{2} \)
29 \( 1 + (5.26 - 2.64i)T + (17.3 - 23.2i)T^{2} \)
31 \( 1 + (1.65 - 2.22i)T + (-8.89 - 29.6i)T^{2} \)
37 \( 1 + (1.09 - 0.918i)T + (6.42 - 36.4i)T^{2} \)
41 \( 1 + (0.931 - 0.612i)T + (16.2 - 37.6i)T^{2} \)
43 \( 1 + (9.37 + 2.22i)T + (38.4 + 19.2i)T^{2} \)
47 \( 1 + (-3.64 - 4.89i)T + (-13.4 + 45.0i)T^{2} \)
53 \( 1 + (-4.26 - 7.38i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (0.598 - 2.00i)T + (-49.2 - 32.4i)T^{2} \)
61 \( 1 + (1.42 - 3.29i)T + (-41.8 - 44.3i)T^{2} \)
67 \( 1 + (-1.09 - 0.547i)T + (40.0 + 53.7i)T^{2} \)
71 \( 1 + (-1.41 - 8.02i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (-1.11 + 6.32i)T + (-68.5 - 24.9i)T^{2} \)
79 \( 1 + (-11.9 - 7.83i)T + (31.2 + 72.5i)T^{2} \)
83 \( 1 + (5.61 + 3.69i)T + (32.8 + 76.2i)T^{2} \)
89 \( 1 + (2.70 - 15.3i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (-2.55 + 2.71i)T + (-5.64 - 96.8i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.70970879469761541678953066528, −9.633081462020484038497584397541, −8.854271578990819312250320835918, −8.483855259029942122506159443019, −7.33791415315280151611334753063, −6.53595549025861208299660909380, −4.89145741287849404878441084131, −4.04202759163170981427389325392, −2.37210293768974581516236167295, −1.57978425520067746160046752005, 0.25146857408648893231015255635, 1.96402294983123802078533699062, 3.63389046251110589960496583981, 5.02838816417517235651832501096, 6.09902248188461463317376075690, 6.89573001253631139947502671905, 7.78548404370275418124745575165, 8.495984639013962504183846014431, 8.977940071943652680624463537990, 10.11400495554785037978405867616

Graph of the $Z$-function along the critical line