L(s) = 1 | + (−1.85 + 0.673i)2-s + (1.43 − 1.20i)4-s + (−0.642 − 3.64i)5-s + (−1.79 − 1.50i)7-s + (0.118 − 0.205i)8-s + (3.64 + 6.31i)10-s + (0.378 − 2.14i)11-s + (4.43 + 1.61i)13-s + (4.34 + 1.58i)14-s + (−0.733 + 4.16i)16-s + (−1.46 − 2.54i)17-s + (3.11 − 5.39i)19-s + (−5.32 − 4.47i)20-s + (0.745 + 4.22i)22-s + (−0.397 + 0.333i)23-s + ⋯ |
L(s) = 1 | + (−1.30 + 0.476i)2-s + (0.719 − 0.604i)4-s + (−0.287 − 1.63i)5-s + (−0.679 − 0.570i)7-s + (0.0419 − 0.0727i)8-s + (1.15 + 1.99i)10-s + (0.114 − 0.646i)11-s + (1.22 + 0.447i)13-s + (1.16 + 0.422i)14-s + (−0.183 + 1.04i)16-s + (−0.355 − 0.616i)17-s + (0.714 − 1.23i)19-s + (−1.19 − 0.999i)20-s + (0.158 + 0.900i)22-s + (−0.0829 + 0.0695i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.802 + 0.597i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.802 + 0.597i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.139280 - 0.420323i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.139280 - 0.420323i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (1.85 - 0.673i)T + (1.53 - 1.28i)T^{2} \) |
| 5 | \( 1 + (0.642 + 3.64i)T + (-4.69 + 1.71i)T^{2} \) |
| 7 | \( 1 + (1.79 + 1.50i)T + (1.21 + 6.89i)T^{2} \) |
| 11 | \( 1 + (-0.378 + 2.14i)T + (-10.3 - 3.76i)T^{2} \) |
| 13 | \( 1 + (-4.43 - 1.61i)T + (9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (1.46 + 2.54i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.11 + 5.39i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.397 - 0.333i)T + (3.99 - 22.6i)T^{2} \) |
| 29 | \( 1 + (3.28 - 1.19i)T + (22.2 - 18.6i)T^{2} \) |
| 31 | \( 1 + (3.29 - 2.76i)T + (5.38 - 30.5i)T^{2} \) |
| 37 | \( 1 + (1.20 + 2.08i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.34 - 0.854i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-0.184 + 1.04i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (-0.181 - 0.152i)T + (8.16 + 46.2i)T^{2} \) |
| 53 | \( 1 + 4.66T + 53T^{2} \) |
| 59 | \( 1 + (-2.31 - 13.1i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (2.81 + 2.36i)T + (10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (13.4 + 4.89i)T + (51.3 + 43.0i)T^{2} \) |
| 71 | \( 1 + (-0.601 - 1.04i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.34 + 4.05i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-12.0 + 4.37i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (10.6 - 3.86i)T + (63.5 - 53.3i)T^{2} \) |
| 89 | \( 1 + (-0.349 + 0.605i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.23 - 6.97i)T + (-91.1 - 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.564310965217071656036677430047, −9.024193411210011766179354412828, −8.643451151275889276944172588992, −7.62284217410166765040013337741, −6.84145834298669143783990223786, −5.77953013232616860803247058955, −4.56688932750607381378120965244, −3.56394644721511209215636070520, −1.32651575353131340359931315930, −0.39157925542589686518637285951,
1.78278160196351368155497694082, 2.93225009246355363228501668370, 3.80186050372204447593869314525, 5.75005327870241179247453388393, 6.53623921474587373849393076359, 7.53248846063986408914228868227, 8.172849375139151043759602702134, 9.249706403702547839353833114583, 9.935048185876011715841622838099, 10.61701879536203007169243421526