L(s) = 1 | + (−2.30 + 0.837i)2-s + (3.06 − 2.57i)4-s + (−0.425 − 2.41i)5-s + (1.53 + 1.28i)7-s + (−2.44 + 4.24i)8-s + (3 + 5.19i)10-s + (0.425 − 2.41i)11-s + (0.939 + 0.342i)13-s + (−4.60 − 1.67i)14-s + (0.694 − 3.93i)16-s + (3.67 + 6.36i)17-s + (0.5 − 0.866i)19-s + (−7.50 − 6.29i)20-s + (1.04 + 5.90i)22-s + (−1.87 + 1.57i)23-s + ⋯ |
L(s) = 1 | + (−1.62 + 0.592i)2-s + (1.53 − 1.28i)4-s + (−0.190 − 1.07i)5-s + (0.579 + 0.485i)7-s + (−0.866 + 1.49i)8-s + (0.948 + 1.64i)10-s + (0.128 − 0.727i)11-s + (0.260 + 0.0948i)13-s + (−1.23 − 0.447i)14-s + (0.173 − 0.984i)16-s + (0.891 + 1.54i)17-s + (0.114 − 0.198i)19-s + (−1.67 − 1.40i)20-s + (0.222 + 1.25i)22-s + (−0.391 + 0.328i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 + 0.230i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 + 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.719720 - 0.0841232i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.719720 - 0.0841232i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (2.30 - 0.837i)T + (1.53 - 1.28i)T^{2} \) |
| 5 | \( 1 + (0.425 + 2.41i)T + (-4.69 + 1.71i)T^{2} \) |
| 7 | \( 1 + (-1.53 - 1.28i)T + (1.21 + 6.89i)T^{2} \) |
| 11 | \( 1 + (-0.425 + 2.41i)T + (-10.3 - 3.76i)T^{2} \) |
| 13 | \( 1 + (-0.939 - 0.342i)T + (9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (-3.67 - 6.36i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.87 - 1.57i)T + (3.99 - 22.6i)T^{2} \) |
| 29 | \( 1 + (-4.60 + 1.67i)T + (22.2 - 18.6i)T^{2} \) |
| 31 | \( 1 + (0.766 - 0.642i)T + (5.38 - 30.5i)T^{2} \) |
| 37 | \( 1 + (4 + 6.92i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.60 + 1.67i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-1.91 + 10.8i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (-7.50 - 6.29i)T + (8.16 + 46.2i)T^{2} \) |
| 53 | \( 1 - 7.34T + 53T^{2} \) |
| 59 | \( 1 + (0.425 + 2.41i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-3.83 - 3.21i)T + (10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (-6.57 - 2.39i)T + (51.3 + 43.0i)T^{2} \) |
| 71 | \( 1 + (3.67 + 6.36i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (5.5 - 9.52i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.57 + 2.39i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-11.5 + 4.18i)T + (63.5 - 53.3i)T^{2} \) |
| 89 | \( 1 + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.21 - 6.89i)T + (-91.1 - 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21193909620023969440211505471, −9.127473069020050410479797443015, −8.531833668933911943139118200886, −8.218279164797200572962443652059, −7.20403293394147129711155766089, −6.00380293690782413716316513648, −5.38260303259562394555271082973, −3.88665997076877152162213410738, −1.91186421346557494617224878107, −0.828688624491273752995699474596,
1.09503061048420658879406261007, 2.46559426982897407613324545775, 3.38820118557286355417146479891, 4.89553094538638744553881560780, 6.58019164451155533887945876499, 7.30873288820904026542199547529, 7.83789058111635691457871960810, 8.796539406578495929923128529521, 9.856060553776301871447172107385, 10.23743720887985471999049886990