L(s) = 1 | + (0.173 − 0.984i)4-s + (−0.173 − 0.984i)7-s + (−0.766 − 0.642i)13-s + (−0.939 − 0.342i)16-s + (0.5 + 0.866i)19-s + (0.766 − 0.642i)25-s − 0.999·28-s + (−0.173 + 0.984i)31-s + (0.5 − 0.866i)37-s + (0.939 + 0.342i)43-s + (−0.766 + 0.642i)52-s + (0.347 + 1.96i)61-s + (−0.5 + 0.866i)64-s + (1.53 + 1.28i)67-s + (−1 − 1.73i)73-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)4-s + (−0.173 − 0.984i)7-s + (−0.766 − 0.642i)13-s + (−0.939 − 0.342i)16-s + (0.5 + 0.866i)19-s + (0.766 − 0.642i)25-s − 0.999·28-s + (−0.173 + 0.984i)31-s + (0.5 − 0.866i)37-s + (0.939 + 0.342i)43-s + (−0.766 + 0.642i)52-s + (0.347 + 1.96i)61-s + (−0.5 + 0.866i)64-s + (1.53 + 1.28i)67-s + (−1 − 1.73i)73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9277571991\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9277571991\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 5 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 11 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 13 | \( 1 + (0.766 + 0.642i)T + (0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (0.173 - 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.347 - 1.96i)T + (-0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-1.53 - 1.28i)T + (0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.939 - 0.342i)T + (0.766 + 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.33287933140796572523264980337, −9.867949724504038678540004354345, −8.828817228807071538831774871303, −7.61844874421815765798444582042, −6.96825860106344992526775285725, −5.93401766614052221110924209146, −5.07687980756451806703374478907, −4.02644344698241976310623600268, −2.63873397899260259435274010216, −1.07006860452449239445642996379,
2.25700220714382018263247780752, 3.09113650625619699444370032892, 4.35590957197330934294767898556, 5.35652577258407168235496086842, 6.56534628716596759399055173243, 7.30737169988048788687182442308, 8.227028236707561573164472820855, 9.113337325184312229164128218011, 9.628431917967447331825562623593, 11.07719868254123728156780357590