L(s) = 1 | + (2.54 + 0.925i)2-s + (4.07 + 3.41i)4-s + (0.290 − 1.64i)5-s + (0.383 − 0.321i)7-s + (4.48 + 7.77i)8-s + (2.26 − 3.91i)10-s + (0.333 + 1.88i)11-s + (−2.92 + 1.06i)13-s + (1.27 − 0.463i)14-s + (2.36 + 13.4i)16-s + (1.33 − 2.30i)17-s + (−2.89 − 5.02i)19-s + (6.81 − 5.71i)20-s + (−0.900 + 5.10i)22-s + (3.55 + 2.98i)23-s + ⋯ |
L(s) = 1 | + (1.79 + 0.654i)2-s + (2.03 + 1.70i)4-s + (0.129 − 0.736i)5-s + (0.144 − 0.121i)7-s + (1.58 + 2.74i)8-s + (0.715 − 1.23i)10-s + (0.100 + 0.569i)11-s + (−0.811 + 0.295i)13-s + (0.340 − 0.123i)14-s + (0.592 + 3.35i)16-s + (0.323 − 0.559i)17-s + (−0.664 − 1.15i)19-s + (1.52 − 1.27i)20-s + (−0.192 + 1.08i)22-s + (0.742 + 0.622i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.597 - 0.802i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.597 - 0.802i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.93187 + 1.97466i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.93187 + 1.97466i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-2.54 - 0.925i)T + (1.53 + 1.28i)T^{2} \) |
| 5 | \( 1 + (-0.290 + 1.64i)T + (-4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (-0.383 + 0.321i)T + (1.21 - 6.89i)T^{2} \) |
| 11 | \( 1 + (-0.333 - 1.88i)T + (-10.3 + 3.76i)T^{2} \) |
| 13 | \( 1 + (2.92 - 1.06i)T + (9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 + (-1.33 + 2.30i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.89 + 5.02i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.55 - 2.98i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (2.45 + 0.894i)T + (22.2 + 18.6i)T^{2} \) |
| 31 | \( 1 + (3.53 + 2.96i)T + (5.38 + 30.5i)T^{2} \) |
| 37 | \( 1 + (-2.42 + 4.20i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (10.8 - 3.94i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (1.56 + 8.86i)T + (-40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (5.23 - 4.39i)T + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 - 5.43T + 53T^{2} \) |
| 59 | \( 1 + (-0.380 + 2.15i)T + (-55.4 - 20.1i)T^{2} \) |
| 61 | \( 1 + (-5.24 + 4.39i)T + (10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (11.7 - 4.26i)T + (51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (1.41 - 2.45i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (4.96 + 8.60i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.99 + 1.81i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (2.56 + 0.933i)T + (63.5 + 53.3i)T^{2} \) |
| 89 | \( 1 + (-5.60 - 9.71i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.19 + 6.78i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96382475143643968196364421490, −9.580089654622645785670480668077, −8.590049067979361941763585092230, −7.34606342542838957852206514418, −7.02676783036600269800700813287, −5.80113092655410401708581768148, −4.90916674433305969857189158626, −4.52192402816144599297564083927, −3.24679946899318826354899672567, −2.04884728159201422323085346359,
1.72719610411447337497956783575, 2.88235851007004392722510645854, 3.60044504096106085899931429972, 4.74341080518417587809030553533, 5.60610664474948015264237107260, 6.42337561538195606511253332711, 7.17150592008138994836949190068, 8.490771374483719794982781674458, 10.12774313891104291887877945832, 10.41339513262699314364685554939