L(s) = 1 | + (−1.48 − 0.539i)2-s + (0.376 + 0.315i)4-s + (−0.291 + 1.65i)5-s + (2.12 − 1.78i)7-s + (1.19 + 2.06i)8-s + (1.32 − 2.29i)10-s + (0.720 + 4.08i)11-s + (−6.46 + 2.35i)13-s + (−4.12 + 1.50i)14-s + (−0.823 − 4.66i)16-s + (0.488 − 0.845i)17-s + (−1.34 − 2.32i)19-s + (−0.631 + 0.530i)20-s + (1.13 − 6.45i)22-s + (−1.23 − 1.03i)23-s + ⋯ |
L(s) = 1 | + (−1.04 − 0.381i)2-s + (0.188 + 0.157i)4-s + (−0.130 + 0.739i)5-s + (0.804 − 0.675i)7-s + (0.420 + 0.729i)8-s + (0.418 − 0.725i)10-s + (0.217 + 1.23i)11-s + (−1.79 + 0.652i)13-s + (−1.10 + 0.400i)14-s + (−0.205 − 1.16i)16-s + (0.118 − 0.205i)17-s + (−0.308 − 0.533i)19-s + (−0.141 + 0.118i)20-s + (0.242 − 1.37i)22-s + (−0.257 − 0.216i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.396 - 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.396 - 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.213830 + 0.325113i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.213830 + 0.325113i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (1.48 + 0.539i)T + (1.53 + 1.28i)T^{2} \) |
| 5 | \( 1 + (0.291 - 1.65i)T + (-4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (-2.12 + 1.78i)T + (1.21 - 6.89i)T^{2} \) |
| 11 | \( 1 + (-0.720 - 4.08i)T + (-10.3 + 3.76i)T^{2} \) |
| 13 | \( 1 + (6.46 - 2.35i)T + (9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 + (-0.488 + 0.845i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.34 + 2.32i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.23 + 1.03i)T + (3.99 + 22.6i)T^{2} \) |
| 29 | \( 1 + (7.73 + 2.81i)T + (22.2 + 18.6i)T^{2} \) |
| 31 | \( 1 + (-0.799 - 0.671i)T + (5.38 + 30.5i)T^{2} \) |
| 37 | \( 1 + (-0.654 + 1.13i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (4.55 - 1.65i)T + (31.4 - 26.3i)T^{2} \) |
| 43 | \( 1 + (-1.70 - 9.69i)T + (-40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (9.57 - 8.03i)T + (8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + 7.34T + 53T^{2} \) |
| 59 | \( 1 + (1.57 - 8.91i)T + (-55.4 - 20.1i)T^{2} \) |
| 61 | \( 1 + (0.984 - 0.826i)T + (10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (-4.36 + 1.58i)T + (51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (-2.81 + 4.87i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.28 - 3.95i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.37 + 1.59i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (-5.41 - 1.97i)T + (63.5 + 53.3i)T^{2} \) |
| 89 | \( 1 + (-2.27 - 3.93i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.48 - 8.44i)T + (-91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57925281370368433643177513866, −9.659754004013524838710969321378, −9.376214916655922387199237338066, −7.921681403109405463068260603766, −7.47703962749734234558237840989, −6.70705302154080197117393935199, −4.94479269266413793908266823958, −4.42944218316830637425377273379, −2.60933967613701859269600672650, −1.64136041999305248079609881916,
0.28439879739354273438849598911, 1.84586039837055695714881246015, 3.53187786665547623244422946278, 4.87844145226277405906371802487, 5.58453353386613176963061456181, 6.90404672879849542133426953351, 7.954188608652911631523263052860, 8.327724856218559981396844656048, 9.083081020339636902272965897366, 9.864571817201945071772413201645