Properties

Label 2-3e6-27.25-c1-0-23
Degree $2$
Conductor $729$
Sign $0.116 + 0.993i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.223 − 1.26i)2-s + (0.326 + 0.118i)4-s + (0.342 − 0.286i)5-s + (3.31 − 1.20i)7-s + (1.50 − 2.61i)8-s + (−0.286 − 0.497i)10-s + (−2.12 − 1.78i)11-s + (0.571 + 3.24i)13-s + (−0.788 − 4.47i)14-s + (−2.43 − 2.04i)16-s + (3.51 + 6.09i)17-s + (2.59 − 4.49i)19-s + (0.145 − 0.0530i)20-s + (−2.73 + 2.29i)22-s + (−6.83 − 2.48i)23-s + ⋯
L(s)  = 1  + (0.157 − 0.895i)2-s + (0.163 + 0.0593i)4-s + (0.152 − 0.128i)5-s + (1.25 − 0.456i)7-s + (0.533 − 0.923i)8-s + (−0.0907 − 0.157i)10-s + (−0.642 − 0.538i)11-s + (0.158 + 0.898i)13-s + (−0.210 − 1.19i)14-s + (−0.609 − 0.511i)16-s + (0.853 + 1.47i)17-s + (0.594 − 1.03i)19-s + (0.0325 − 0.0118i)20-s + (−0.583 + 0.489i)22-s + (−1.42 − 0.518i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.116 + 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.116 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $0.116 + 0.993i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ 0.116 + 0.993i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.64048 - 1.45990i\)
\(L(\frac12)\) \(\approx\) \(1.64048 - 1.45990i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-0.223 + 1.26i)T + (-1.87 - 0.684i)T^{2} \)
5 \( 1 + (-0.342 + 0.286i)T + (0.868 - 4.92i)T^{2} \)
7 \( 1 + (-3.31 + 1.20i)T + (5.36 - 4.49i)T^{2} \)
11 \( 1 + (2.12 + 1.78i)T + (1.91 + 10.8i)T^{2} \)
13 \( 1 + (-0.571 - 3.24i)T + (-12.2 + 4.44i)T^{2} \)
17 \( 1 + (-3.51 - 6.09i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2.59 + 4.49i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (6.83 + 2.48i)T + (17.6 + 14.7i)T^{2} \)
29 \( 1 + (-0.628 + 3.56i)T + (-27.2 - 9.91i)T^{2} \)
31 \( 1 + (-1.81 - 0.662i)T + (23.7 + 19.9i)T^{2} \)
37 \( 1 + (-1.61 - 2.79i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (0.844 + 4.78i)T + (-38.5 + 14.0i)T^{2} \)
43 \( 1 + (4.41 + 3.70i)T + (7.46 + 42.3i)T^{2} \)
47 \( 1 + (2.83 - 1.03i)T + (36.0 - 30.2i)T^{2} \)
53 \( 1 - 8.77T + 53T^{2} \)
59 \( 1 + (-2.27 + 1.90i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (7.41 - 2.69i)T + (46.7 - 39.2i)T^{2} \)
67 \( 1 + (1.63 + 9.29i)T + (-62.9 + 22.9i)T^{2} \)
71 \( 1 + (2.65 + 4.59i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-0.777 + 1.34i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (2.06 - 11.7i)T + (-74.2 - 27.0i)T^{2} \)
83 \( 1 + (2.82 - 16.0i)T + (-77.9 - 28.3i)T^{2} \)
89 \( 1 + (9.21 - 15.9i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-7.74 - 6.50i)T + (16.8 + 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.48765668331469789785800989253, −9.628046613860613007356083133450, −8.360261654486597762108794806131, −7.77682128830913304920251701123, −6.71966552652010550501180642994, −5.55987677790874399985789482485, −4.43779963788571805449049321832, −3.60440898636823535859337145282, −2.23383950060896805318108107847, −1.28031084662150670435868966997, 1.68886000283347128355313421753, 2.87006991808792782396662685596, 4.62212709714873164596355649478, 5.41972235232899322299572596489, 5.94706746313735144991734371450, 7.33367556318084413842246288322, 7.82476387687152806052289503713, 8.429559932289503579359023539947, 9.903594581397341581622148746310, 10.42204284882412835811045848123

Graph of the $Z$-function along the critical line