Properties

Label 2-3e6-27.22-c1-0-6
Degree $2$
Conductor $729$
Sign $-0.993 - 0.116i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.20 + 1.01i)2-s + (0.0853 − 0.483i)4-s + (−1.57 + 0.574i)5-s + (0.482 + 2.73i)7-s + (−1.19 − 2.06i)8-s + (1.32 − 2.29i)10-s + (3.90 + 1.41i)11-s + (5.26 + 4.41i)13-s + (−3.36 − 2.81i)14-s + (4.45 + 1.62i)16-s + (−0.488 + 0.845i)17-s + (−1.34 − 2.32i)19-s + (0.143 + 0.812i)20-s + (−6.15 + 2.24i)22-s + (0.280 − 1.58i)23-s + ⋯
L(s)  = 1  + (−0.854 + 0.717i)2-s + (0.0426 − 0.241i)4-s + (−0.705 + 0.256i)5-s + (0.182 + 1.03i)7-s + (−0.420 − 0.729i)8-s + (0.418 − 0.725i)10-s + (1.17 + 0.428i)11-s + (1.46 + 1.22i)13-s + (−0.898 − 0.753i)14-s + (1.11 + 0.405i)16-s + (−0.118 + 0.205i)17-s + (−0.308 − 0.533i)19-s + (0.0320 + 0.181i)20-s + (−1.31 + 0.477i)22-s + (0.0584 − 0.331i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.993 - 0.116i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.993 - 0.116i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $-0.993 - 0.116i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (325, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ -0.993 - 0.116i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0422477 + 0.725365i\)
\(L(\frac12)\) \(\approx\) \(0.0422477 + 0.725365i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (1.20 - 1.01i)T + (0.347 - 1.96i)T^{2} \)
5 \( 1 + (1.57 - 0.574i)T + (3.83 - 3.21i)T^{2} \)
7 \( 1 + (-0.482 - 2.73i)T + (-6.57 + 2.39i)T^{2} \)
11 \( 1 + (-3.90 - 1.41i)T + (8.42 + 7.07i)T^{2} \)
13 \( 1 + (-5.26 - 4.41i)T + (2.25 + 12.8i)T^{2} \)
17 \( 1 + (0.488 - 0.845i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.34 + 2.32i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.280 + 1.58i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (6.30 - 5.28i)T + (5.03 - 28.5i)T^{2} \)
31 \( 1 + (-0.181 + 1.02i)T + (-29.1 - 10.6i)T^{2} \)
37 \( 1 + (-0.654 + 1.13i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (3.71 + 3.11i)T + (7.11 + 40.3i)T^{2} \)
43 \( 1 + (9.24 + 3.36i)T + (32.9 + 27.6i)T^{2} \)
47 \( 1 + (-2.17 - 12.3i)T + (-44.1 + 16.0i)T^{2} \)
53 \( 1 - 7.34T + 53T^{2} \)
59 \( 1 + (8.50 - 3.09i)T + (45.1 - 37.9i)T^{2} \)
61 \( 1 + (0.223 + 1.26i)T + (-57.3 + 20.8i)T^{2} \)
67 \( 1 + (3.55 + 2.98i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (2.81 - 4.87i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-2.28 - 3.95i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-3.56 + 2.99i)T + (13.7 - 77.7i)T^{2} \)
83 \( 1 + (-4.41 + 3.70i)T + (14.4 - 81.7i)T^{2} \)
89 \( 1 + (2.27 + 3.93i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (8.05 + 2.93i)T + (74.3 + 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.83783819240141506237646202431, −9.431380053924878513985772945624, −8.933958650059561642133270557834, −8.444786517423694500488798085351, −7.30861404176569656139226846285, −6.65474325554084699693365006806, −5.87191026458504705772127091847, −4.27363378517147678842032016355, −3.46817225966419530066137686943, −1.66335153226098011318739431585, 0.55188702552386794945113662783, 1.54257029198449565021042083506, 3.40211153515848667042011619857, 4.04871908832715867964025669570, 5.52732809607248920608450490651, 6.50924944243303140041122981541, 7.84553910966044299791240780324, 8.307234144468800009185813332917, 9.158267888098045476364634723347, 10.14425897206466151146913069112

Graph of the $Z$-function along the critical line