L(s) = 1 | + (1.87 − 1.57i)2-s + (0.694 − 3.93i)4-s + (2.30 − 0.837i)5-s + (0.347 + 1.96i)7-s + (−2.44 − 4.24i)8-s + (2.99 − 5.19i)10-s + (−2.30 − 0.837i)11-s + (−0.766 − 0.642i)13-s + (3.75 + 3.14i)14-s + (−3.75 − 1.36i)16-s + (3.67 − 6.36i)17-s + (0.5 + 0.866i)19-s + (−1.70 − 9.64i)20-s + (−5.63 + 2.05i)22-s + (−0.425 + 2.41i)23-s + ⋯ |
L(s) = 1 | + (1.32 − 1.11i)2-s + (0.347 − 1.96i)4-s + (1.02 − 0.374i)5-s + (0.131 + 0.744i)7-s + (−0.866 − 1.50i)8-s + (0.948 − 1.64i)10-s + (−0.694 − 0.252i)11-s + (−0.212 − 0.178i)13-s + (1.00 + 0.841i)14-s + (−0.939 − 0.342i)16-s + (0.891 − 1.54i)17-s + (0.114 + 0.198i)19-s + (−0.380 − 2.15i)20-s + (−1.20 + 0.437i)22-s + (−0.0886 + 0.502i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.286 + 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.286 + 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.10340 - 2.82535i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.10340 - 2.82535i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (-1.87 + 1.57i)T + (0.347 - 1.96i)T^{2} \) |
| 5 | \( 1 + (-2.30 + 0.837i)T + (3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (-0.347 - 1.96i)T + (-6.57 + 2.39i)T^{2} \) |
| 11 | \( 1 + (2.30 + 0.837i)T + (8.42 + 7.07i)T^{2} \) |
| 13 | \( 1 + (0.766 + 0.642i)T + (2.25 + 12.8i)T^{2} \) |
| 17 | \( 1 + (-3.67 + 6.36i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.425 - 2.41i)T + (-21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (3.75 - 3.14i)T + (5.03 - 28.5i)T^{2} \) |
| 31 | \( 1 + (0.173 - 0.984i)T + (-29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (4 - 6.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.75 - 3.14i)T + (7.11 + 40.3i)T^{2} \) |
| 43 | \( 1 + (10.3 + 3.76i)T + (32.9 + 27.6i)T^{2} \) |
| 47 | \( 1 + (-1.70 - 9.64i)T + (-44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 - 7.34T + 53T^{2} \) |
| 59 | \( 1 + (-2.30 + 0.837i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (-0.868 - 4.92i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (5.36 + 4.49i)T + (11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (3.67 - 6.36i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.5 + 9.52i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (5.36 - 4.49i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (9.38 - 7.87i)T + (14.4 - 81.7i)T^{2} \) |
| 89 | \( 1 + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.57 - 2.39i)T + (74.3 + 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16517596340181205267823349645, −9.732328764555140800070285285403, −8.720534454315841984284157958315, −7.37486192393783654333135994187, −5.92076387460732203056663577723, −5.39925807804764736325694506956, −4.84111624575102492535012963009, −3.30087905215984719612479392837, −2.54071501279500209673692587599, −1.43262748222905769819619402922,
2.12438216014932638184035308650, 3.50178692869553766941748073015, 4.39211148132042424281860766416, 5.51723725601608902028185211633, 5.99281725120436232751362803874, 7.00175404752646076864035136410, 7.62493000496579435171142655084, 8.595495292462546908617022306376, 10.05611317754303462958026487729, 10.45044205314647292995525433545