L(s) = 1 | + (−1.87 − 1.57i)2-s + (0.694 + 3.93i)4-s + (−2.30 − 0.837i)5-s + (0.347 − 1.96i)7-s + (2.44 − 4.24i)8-s + (2.99 + 5.19i)10-s + (2.30 − 0.837i)11-s + (−0.766 + 0.642i)13-s + (−3.75 + 3.14i)14-s + (−3.75 + 1.36i)16-s + (−3.67 − 6.36i)17-s + (0.5 − 0.866i)19-s + (1.70 − 9.64i)20-s + (−5.63 − 2.05i)22-s + (0.425 + 2.41i)23-s + ⋯ |
L(s) = 1 | + (−1.32 − 1.11i)2-s + (0.347 + 1.96i)4-s + (−1.02 − 0.374i)5-s + (0.131 − 0.744i)7-s + (0.866 − 1.50i)8-s + (0.948 + 1.64i)10-s + (0.694 − 0.252i)11-s + (−0.212 + 0.178i)13-s + (−1.00 + 0.841i)14-s + (−0.939 + 0.342i)16-s + (−0.891 − 1.54i)17-s + (0.114 − 0.198i)19-s + (0.380 − 2.15i)20-s + (−1.20 − 0.437i)22-s + (0.0886 + 0.502i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.286 - 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.286 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0910404 + 0.122288i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0910404 + 0.122288i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (1.87 + 1.57i)T + (0.347 + 1.96i)T^{2} \) |
| 5 | \( 1 + (2.30 + 0.837i)T + (3.83 + 3.21i)T^{2} \) |
| 7 | \( 1 + (-0.347 + 1.96i)T + (-6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (-2.30 + 0.837i)T + (8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (0.766 - 0.642i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (3.67 + 6.36i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.425 - 2.41i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (-3.75 - 3.14i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (0.173 + 0.984i)T + (-29.1 + 10.6i)T^{2} \) |
| 37 | \( 1 + (4 + 6.92i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.75 - 3.14i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (10.3 - 3.76i)T + (32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (1.70 - 9.64i)T + (-44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 + 7.34T + 53T^{2} \) |
| 59 | \( 1 + (2.30 + 0.837i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-0.868 + 4.92i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (5.36 - 4.49i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-3.67 - 6.36i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (5.5 - 9.52i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.36 + 4.49i)T + (13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (-9.38 - 7.87i)T + (14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.57 + 2.39i)T + (74.3 - 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.698254910424481587176310110212, −9.093162180899953062096062934541, −8.292738554791100787037972816937, −7.49906912769170327326363715229, −6.79637048721170274159224038277, −4.82872292518537217066579284612, −3.88348160621524081788022795972, −2.87677162167449744720379689589, −1.32740546626422994784308053203, −0.13300248356930204438894034282,
1.80280562456634389175073435232, 3.61381099416716000138896045441, 4.93058667722799547953657044292, 6.20767850818970927245116129578, 6.73537061074135413371563153501, 7.68499287276254869216157832052, 8.491111436658245951399547279377, 8.824301623934709159704433702682, 10.03393450575412174557456312777, 10.62256439838118509478025720920