L(s) = 1 | + (0.673 + 0.565i)2-s + (−0.213 − 1.20i)4-s + (3.64 + 1.32i)5-s + (−0.379 + 2.15i)7-s + (1.41 − 2.45i)8-s + (1.70 + 2.95i)10-s + (0.152 − 0.0555i)11-s + (1.84 − 1.55i)13-s + (−1.47 + 1.23i)14-s + (0.0393 − 0.0143i)16-s + (1.5 + 2.59i)17-s + (−1.79 + 3.11i)19-s + (0.826 − 4.68i)20-s + (0.134 + 0.0488i)22-s + (−0.492 − 2.79i)23-s + ⋯ |
L(s) = 1 | + (0.476 + 0.399i)2-s + (−0.106 − 0.604i)4-s + (1.63 + 0.593i)5-s + (−0.143 + 0.813i)7-s + (0.501 − 0.868i)8-s + (0.539 + 0.934i)10-s + (0.0460 − 0.0167i)11-s + (0.512 − 0.429i)13-s + (−0.393 + 0.330i)14-s + (0.00984 − 0.00358i)16-s + (0.363 + 0.630i)17-s + (−0.412 + 0.714i)19-s + (0.184 − 1.04i)20-s + (0.0286 + 0.0104i)22-s + (−0.102 − 0.582i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.893−0.448i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.893−0.448i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.893−0.448i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(406,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.893−0.448i)
|
Particular Values
L(1) |
≈ |
2.44891+0.580403i |
L(21) |
≈ |
2.44891+0.580403i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−0.673−0.565i)T+(0.347+1.96i)T2 |
| 5 | 1+(−3.64−1.32i)T+(3.83+3.21i)T2 |
| 7 | 1+(0.379−2.15i)T+(−6.57−2.39i)T2 |
| 11 | 1+(−0.152+0.0555i)T+(8.42−7.07i)T2 |
| 13 | 1+(−1.84+1.55i)T+(2.25−12.8i)T2 |
| 17 | 1+(−1.5−2.59i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.79−3.11i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.492+2.79i)T+(−21.6+7.86i)T2 |
| 29 | 1+(5.14+4.31i)T+(5.03+28.5i)T2 |
| 31 | 1+(0.900+5.10i)T+(−29.1+10.6i)T2 |
| 37 | 1+(−3.31−5.74i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−4.44+3.72i)T+(7.11−40.3i)T2 |
| 43 | 1+(−5.85+2.12i)T+(32.9−27.6i)T2 |
| 47 | 1+(1.28−7.28i)T+(−44.1−16.0i)T2 |
| 53 | 1+1.40T+53T2 |
| 59 | 1+(4.81+1.75i)T+(45.1+37.9i)T2 |
| 61 | 1+(0.656−3.72i)T+(−57.3−20.8i)T2 |
| 67 | 1+(4.49−3.76i)T+(11.6−65.9i)T2 |
| 71 | 1+(7.65+13.2i)T+(−35.5+61.4i)T2 |
| 73 | 1+(4.34−7.51i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.971+0.815i)T+(13.7+77.7i)T2 |
| 83 | 1+(−6.49−5.44i)T+(14.4+81.7i)T2 |
| 89 | 1+(−3.86+6.68i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−3.67+1.33i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.37149984674044292491271602621, −9.659241432212485288371583358629, −9.008886339504521614017021434275, −7.72300881661240446542896653630, −6.39741585564678329963751217049, −5.95332593013596036257693295062, −5.54030650392550113103358919537, −4.14684791338315242107953857003, −2.65832921717516611532379786473, −1.59003019231981783883332441344,
1.43703667937789102383478970181, 2.60277388037505361012481497282, 3.82905360015540609018045200664, 4.83795533021789518208528383653, 5.65109881310182232145496816693, 6.76616400847717730892397778451, 7.68271369880411180354147403106, 8.968303506005734082332832279343, 9.314167855791265639250028357834, 10.45049552979046521493965176552