Properties

Label 2-3e6-27.16-c1-0-12
Degree $2$
Conductor $729$
Sign $-0.116 - 0.993i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.50 + 1.26i)2-s + (0.326 + 1.85i)4-s + (3.47 + 1.26i)5-s + (−0.407 + 2.31i)7-s + (0.118 − 0.205i)8-s + (3.64 + 6.31i)10-s + (−2.04 + 0.745i)11-s + (−3.61 + 3.03i)13-s + (−3.54 + 2.97i)14-s + (3.97 − 1.44i)16-s + (−1.46 − 2.54i)17-s + (3.11 − 5.39i)19-s + (−1.20 + 6.85i)20-s + (−4.03 − 1.46i)22-s + (−0.0901 − 0.511i)23-s + ⋯
L(s)  = 1  + (1.06 + 0.895i)2-s + (0.163 + 0.925i)4-s + (1.55 + 0.566i)5-s + (−0.154 + 0.873i)7-s + (0.0419 − 0.0727i)8-s + (1.15 + 1.99i)10-s + (−0.617 + 0.224i)11-s + (−1.00 + 0.840i)13-s + (−0.946 + 0.794i)14-s + (0.992 − 0.361i)16-s + (−0.355 − 0.616i)17-s + (0.714 − 1.23i)19-s + (−0.270 + 1.53i)20-s + (−0.859 − 0.312i)22-s + (−0.0187 − 0.106i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.116 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.116 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $-0.116 - 0.993i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (406, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ -0.116 - 0.993i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.12940 + 2.39279i\)
\(L(\frac12)\) \(\approx\) \(2.12940 + 2.39279i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-1.50 - 1.26i)T + (0.347 + 1.96i)T^{2} \)
5 \( 1 + (-3.47 - 1.26i)T + (3.83 + 3.21i)T^{2} \)
7 \( 1 + (0.407 - 2.31i)T + (-6.57 - 2.39i)T^{2} \)
11 \( 1 + (2.04 - 0.745i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (3.61 - 3.03i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (1.46 + 2.54i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-3.11 + 5.39i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (0.0901 + 0.511i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-2.67 - 2.24i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (0.747 + 4.23i)T + (-29.1 + 10.6i)T^{2} \)
37 \( 1 + (1.20 + 2.08i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (1.91 - 1.60i)T + (7.11 - 40.3i)T^{2} \)
43 \( 1 + (1 - 0.363i)T + (32.9 - 27.6i)T^{2} \)
47 \( 1 + (-0.0412 + 0.233i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 + 4.66T + 53T^{2} \)
59 \( 1 + (12.5 + 4.55i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (0.638 - 3.61i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-10.9 + 9.19i)T + (11.6 - 65.9i)T^{2} \)
71 \( 1 + (-0.601 - 1.04i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-2.34 + 4.05i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (9.80 + 8.22i)T + (13.7 + 77.7i)T^{2} \)
83 \( 1 + (-8.65 - 7.26i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (-0.349 + 0.605i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-6.65 + 2.42i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.50984938606945278451407932485, −9.578696419762578646119724367397, −9.165387689340921434782959961874, −7.56878110992236554107520164187, −6.78180216802383861575655621221, −6.17463000750522432559330607215, −5.21855512161456302866753910816, −4.78715124933758586004548095178, −2.98226978638077791889148029052, −2.18353243566683180971786423464, 1.36235173811013166272104627780, 2.45761220700379642066382227535, 3.50294710750217477675815095163, 4.74751334684969392858139884762, 5.39896156623780067430726539298, 6.16032367260358192432750980339, 7.54565607532432448167081943881, 8.515927738857142961638368199229, 9.937154224060857342945644024766, 10.12739169550036213695942541745

Graph of the $Z$-function along the critical line