L(s) = 1 | + (−0.425 − 2.41i)2-s + (−3.75 + 1.36i)4-s + (1.87 + 1.57i)5-s + (−1.87 − 0.684i)7-s + (2.44 + 4.24i)8-s + (3.00 − 5.19i)10-s + (−1.87 + 1.57i)11-s + (−0.173 + 0.984i)13-s + (−0.850 + 4.82i)14-s + (3.06 − 2.57i)16-s + (−3.67 + 6.36i)17-s + (0.5 + 0.866i)19-s + (−9.20 − 3.35i)20-s + (4.59 + 3.85i)22-s + (−2.30 + 0.837i)23-s + ⋯ |
L(s) = 1 | + (−0.300 − 1.70i)2-s + (−1.87 + 0.684i)4-s + (0.839 + 0.704i)5-s + (−0.710 − 0.258i)7-s + (0.866 + 1.50i)8-s + (0.948 − 1.64i)10-s + (−0.565 + 0.474i)11-s + (−0.0481 + 0.273i)13-s + (−0.227 + 1.28i)14-s + (0.766 − 0.642i)16-s + (−0.891 + 1.54i)17-s + (0.114 + 0.198i)19-s + (−2.05 − 0.749i)20-s + (0.979 + 0.822i)22-s + (−0.479 + 0.174i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.230i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.701746 + 0.0820224i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.701746 + 0.0820224i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 + (0.425 + 2.41i)T + (-1.87 + 0.684i)T^{2} \) |
| 5 | \( 1 + (-1.87 - 1.57i)T + (0.868 + 4.92i)T^{2} \) |
| 7 | \( 1 + (1.87 + 0.684i)T + (5.36 + 4.49i)T^{2} \) |
| 11 | \( 1 + (1.87 - 1.57i)T + (1.91 - 10.8i)T^{2} \) |
| 13 | \( 1 + (0.173 - 0.984i)T + (-12.2 - 4.44i)T^{2} \) |
| 17 | \( 1 + (3.67 - 6.36i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.30 - 0.837i)T + (17.6 - 14.7i)T^{2} \) |
| 29 | \( 1 + (-0.850 - 4.82i)T + (-27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (-0.939 + 0.342i)T + (23.7 - 19.9i)T^{2} \) |
| 37 | \( 1 + (4 - 6.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.850 - 4.82i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (-8.42 + 7.07i)T + (7.46 - 42.3i)T^{2} \) |
| 47 | \( 1 + (-9.20 - 3.35i)T + (36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 + 7.34T + 53T^{2} \) |
| 59 | \( 1 + (-1.87 - 1.57i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (4.69 + 1.71i)T + (46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (1.21 - 6.89i)T + (-62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (-3.67 + 6.36i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (5.5 + 9.52i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.21 + 6.89i)T + (-74.2 + 27.0i)T^{2} \) |
| 83 | \( 1 + (-2.12 - 12.0i)T + (-77.9 + 28.3i)T^{2} \) |
| 89 | \( 1 + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.36 - 4.49i)T + (16.8 - 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52560638576943268439683311850, −9.893661370661692994535946131478, −9.167433575749506248188879348841, −8.203345128394665397791655164256, −6.86393422021330070506602330635, −5.98901889903242688264675901853, −4.53976462552000741644412006268, −3.53644016501746653482806567517, −2.55284369076679863162709418970, −1.67425066860703962612759841841,
0.39185498606565115252436813155, 2.61337457262061862131272820235, 4.43260302058404045758282899383, 5.40907205408259682944893343773, 5.88949849729308489865405908914, 6.83030377137115558545114505473, 7.66817675136544411236690951514, 8.643372434430798192143376296296, 9.299814619252975785339760472285, 9.754359773377069187279286012881