Properties

Label 2-3e6-243.151-c1-0-25
Degree $2$
Conductor $729$
Sign $-0.843 + 0.536i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.83 − 0.509i)2-s + (1.37 − 0.832i)4-s + (−3.83 − 0.148i)5-s + (0.365 − 0.0571i)7-s + (−0.508 + 0.538i)8-s + (−7.09 + 1.68i)10-s + (0.814 − 5.96i)11-s + (−3.43 − 5.00i)13-s + (0.639 − 0.290i)14-s + (−2.15 + 4.09i)16-s + (−3.18 − 1.60i)17-s + (0.159 − 2.73i)19-s + (−5.40 + 2.98i)20-s + (−1.54 − 11.3i)22-s + (0.230 + 0.597i)23-s + ⋯
L(s)  = 1  + (1.29 − 0.360i)2-s + (0.689 − 0.416i)4-s + (−1.71 − 0.0665i)5-s + (0.138 − 0.0215i)7-s + (−0.179 + 0.190i)8-s + (−2.24 + 0.531i)10-s + (0.245 − 1.79i)11-s + (−0.951 − 1.38i)13-s + (0.170 − 0.0776i)14-s + (−0.539 + 1.02i)16-s + (−0.772 − 0.388i)17-s + (0.0365 − 0.627i)19-s + (−1.20 + 0.667i)20-s + (−0.330 − 2.41i)22-s + (0.0480 + 0.124i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.843 + 0.536i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.843 + 0.536i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $-0.843 + 0.536i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (613, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ -0.843 + 0.536i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.338262 - 1.16183i\)
\(L(\frac12)\) \(\approx\) \(0.338262 - 1.16183i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-1.83 + 0.509i)T + (1.71 - 1.03i)T^{2} \)
5 \( 1 + (3.83 + 0.148i)T + (4.98 + 0.387i)T^{2} \)
7 \( 1 + (-0.365 + 0.0571i)T + (6.66 - 2.13i)T^{2} \)
11 \( 1 + (-0.814 + 5.96i)T + (-10.5 - 2.94i)T^{2} \)
13 \( 1 + (3.43 + 5.00i)T + (-4.68 + 12.1i)T^{2} \)
17 \( 1 + (3.18 + 1.60i)T + (10.1 + 13.6i)T^{2} \)
19 \( 1 + (-0.159 + 2.73i)T + (-18.8 - 2.20i)T^{2} \)
23 \( 1 + (-0.230 - 0.597i)T + (-17.0 + 15.4i)T^{2} \)
29 \( 1 + (0.792 - 0.566i)T + (9.38 - 27.4i)T^{2} \)
31 \( 1 + (-3.51 - 4.03i)T + (-4.19 + 30.7i)T^{2} \)
37 \( 1 + (3.14 - 4.22i)T + (-10.6 - 35.4i)T^{2} \)
41 \( 1 + (-0.857 - 3.32i)T + (-35.8 + 19.8i)T^{2} \)
43 \( 1 + (-3.41 + 3.09i)T + (4.16 - 42.7i)T^{2} \)
47 \( 1 + (-2.84 + 3.25i)T + (-6.36 - 46.5i)T^{2} \)
53 \( 1 + (-0.566 - 3.21i)T + (-49.8 + 18.1i)T^{2} \)
59 \( 1 + (-1.88 - 0.768i)T + (42.1 + 41.3i)T^{2} \)
61 \( 1 + (12.5 + 7.55i)T + (28.4 + 53.9i)T^{2} \)
67 \( 1 + (-6.29 - 4.49i)T + (21.6 + 63.3i)T^{2} \)
71 \( 1 + (-2.46 + 8.24i)T + (-59.3 - 39.0i)T^{2} \)
73 \( 1 + (6.59 + 1.56i)T + (65.2 + 32.7i)T^{2} \)
79 \( 1 + (-2.56 - 2.51i)T + (1.53 + 78.9i)T^{2} \)
83 \( 1 + (-3.79 + 14.7i)T + (-72.6 - 40.0i)T^{2} \)
89 \( 1 + (1.54 + 5.15i)T + (-74.3 + 48.9i)T^{2} \)
97 \( 1 + (-12.6 + 0.491i)T + (96.7 - 7.51i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.58998022237976842970574575634, −8.906991975332164531893033290720, −8.288703216892492350884736801158, −7.43251014144656741272926739086, −6.27842873351775634749976381141, −5.15317530506279099836904629302, −4.50159615246806392690071733715, −3.35725616403862270483301814402, −2.96393967374781155001160036200, −0.39622055406606530537209505881, 2.28754762884153502784458652483, 3.85005631448763961567656039731, 4.33904865410943187187733189934, 4.90007399777503723695531802634, 6.44558963445218499744528674580, 7.15632883309707980454685661260, 7.70418259370945199966910967311, 9.000147534171560731790900122898, 9.861302929983900855171801270758, 11.15238546921944590631228835925

Graph of the $Z$-function along the critical line