Properties

Label 2-3e6-243.151-c1-0-11
Degree $2$
Conductor $729$
Sign $0.160 - 0.987i$
Analytic cond. $5.82109$
Root an. cond. $2.41269$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.26 + 0.630i)2-s + (3.02 − 1.82i)4-s + (2.74 + 0.106i)5-s + (2.01 − 0.314i)7-s + (−2.47 + 2.62i)8-s + (−6.28 + 1.48i)10-s + (−0.475 + 3.48i)11-s + (3.06 + 4.47i)13-s + (−4.36 + 1.98i)14-s + (0.657 − 1.24i)16-s + (−6.06 − 3.04i)17-s + (−0.238 + 4.10i)19-s + (8.49 − 4.68i)20-s + (−1.11 − 8.19i)22-s + (3.06 + 7.92i)23-s + ⋯
L(s)  = 1  + (−1.60 + 0.446i)2-s + (1.51 − 0.912i)4-s + (1.22 + 0.0476i)5-s + (0.760 − 0.118i)7-s + (−0.874 + 0.926i)8-s + (−1.98 + 0.471i)10-s + (−0.143 + 1.05i)11-s + (0.851 + 1.24i)13-s + (−1.16 + 0.529i)14-s + (0.164 − 0.312i)16-s + (−1.47 − 0.739i)17-s + (−0.0548 + 0.941i)19-s + (1.89 − 1.04i)20-s + (−0.238 − 1.74i)22-s + (0.638 + 1.65i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 - 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(729\)    =    \(3^{6}\)
Sign: $0.160 - 0.987i$
Analytic conductor: \(5.82109\)
Root analytic conductor: \(2.41269\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{729} (613, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 729,\ (\ :1/2),\ 0.160 - 0.987i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.690620 + 0.587587i\)
\(L(\frac12)\) \(\approx\) \(0.690620 + 0.587587i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (2.26 - 0.630i)T + (1.71 - 1.03i)T^{2} \)
5 \( 1 + (-2.74 - 0.106i)T + (4.98 + 0.387i)T^{2} \)
7 \( 1 + (-2.01 + 0.314i)T + (6.66 - 2.13i)T^{2} \)
11 \( 1 + (0.475 - 3.48i)T + (-10.5 - 2.94i)T^{2} \)
13 \( 1 + (-3.06 - 4.47i)T + (-4.68 + 12.1i)T^{2} \)
17 \( 1 + (6.06 + 3.04i)T + (10.1 + 13.6i)T^{2} \)
19 \( 1 + (0.238 - 4.10i)T + (-18.8 - 2.20i)T^{2} \)
23 \( 1 + (-3.06 - 7.92i)T + (-17.0 + 15.4i)T^{2} \)
29 \( 1 + (-3.45 + 2.46i)T + (9.38 - 27.4i)T^{2} \)
31 \( 1 + (3.03 + 3.48i)T + (-4.19 + 30.7i)T^{2} \)
37 \( 1 + (1.71 - 2.30i)T + (-10.6 - 35.4i)T^{2} \)
41 \( 1 + (0.270 + 1.05i)T + (-35.8 + 19.8i)T^{2} \)
43 \( 1 + (-2.62 + 2.38i)T + (4.16 - 42.7i)T^{2} \)
47 \( 1 + (-1.07 + 1.23i)T + (-6.36 - 46.5i)T^{2} \)
53 \( 1 + (0.605 + 3.43i)T + (-49.8 + 18.1i)T^{2} \)
59 \( 1 + (-5.85 - 2.39i)T + (42.1 + 41.3i)T^{2} \)
61 \( 1 + (1.49 + 0.902i)T + (28.4 + 53.9i)T^{2} \)
67 \( 1 + (3.44 + 2.46i)T + (21.6 + 63.3i)T^{2} \)
71 \( 1 + (3.29 - 11.0i)T + (-59.3 - 39.0i)T^{2} \)
73 \( 1 + (-4.93 - 1.17i)T + (65.2 + 32.7i)T^{2} \)
79 \( 1 + (-2.80 - 2.75i)T + (1.53 + 78.9i)T^{2} \)
83 \( 1 + (-3.48 + 13.5i)T + (-72.6 - 40.0i)T^{2} \)
89 \( 1 + (-1.52 - 5.08i)T + (-74.3 + 48.9i)T^{2} \)
97 \( 1 + (8.20 - 0.318i)T + (96.7 - 7.51i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26811556203966752469446287567, −9.462103286994288440500355173478, −9.119102271366149758700519604532, −8.128040006753443697372210617156, −7.16522767433546689291871459280, −6.55897268198204042888137832557, −5.54028219605313381809004778967, −4.30164531038385963313239298916, −2.09365863876717194150960424216, −1.56597672550597917509399440179, 0.831870114333679526280150329435, 2.03454454687944953940800331827, 2.98318490405130809084463901776, 4.86899675239945906361634851884, 6.00121593960826208019010579244, 6.81101174624532242782630912039, 8.149613300385877589415022413359, 8.663667005230481736087415516674, 9.131497259940675969578536100990, 10.37077327634634420007350304211

Graph of the $Z$-function along the critical line