L(s) = 1 | + (1.11 + 0.309i)2-s + (−0.574 − 0.346i)4-s + (−2.97 + 0.115i)5-s + (4.35 + 0.681i)7-s + (−2.11 − 2.23i)8-s + (−3.33 − 0.790i)10-s + (−0.228 − 1.67i)11-s + (0.555 − 0.809i)13-s + (4.62 + 2.10i)14-s + (−1.02 − 1.95i)16-s + (0.733 − 0.368i)17-s + (−0.468 − 8.04i)19-s + (1.74 + 0.963i)20-s + (0.263 − 1.92i)22-s + (2.88 − 7.48i)23-s + ⋯ |
L(s) = 1 | + (0.785 + 0.218i)2-s + (−0.287 − 0.173i)4-s + (−1.32 + 0.0515i)5-s + (1.64 + 0.257i)7-s + (−0.747 − 0.791i)8-s + (−1.05 − 0.249i)10-s + (−0.0688 − 0.504i)11-s + (0.153 − 0.224i)13-s + (1.23 + 0.562i)14-s + (−0.257 − 0.488i)16-s + (0.177 − 0.0893i)17-s + (−0.107 − 1.84i)19-s + (0.390 + 0.215i)20-s + (0.0561 − 0.410i)22-s + (0.602 − 1.56i)23-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)(0.422+0.906i)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)(0.422+0.906i)Λ(1−s)
Degree: |
2 |
Conductor: |
729
= 36
|
Sign: |
0.422+0.906i
|
Analytic conductor: |
5.82109 |
Root analytic conductor: |
2.41269 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ729(685,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 729, ( :1/2), 0.422+0.906i)
|
Particular Values
L(1) |
≈ |
1.35049−0.860450i |
L(21) |
≈ |
1.35049−0.860450i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(−1.11−0.309i)T+(1.71+1.03i)T2 |
| 5 | 1+(2.97−0.115i)T+(4.98−0.387i)T2 |
| 7 | 1+(−4.35−0.681i)T+(6.66+2.13i)T2 |
| 11 | 1+(0.228+1.67i)T+(−10.5+2.94i)T2 |
| 13 | 1+(−0.555+0.809i)T+(−4.68−12.1i)T2 |
| 17 | 1+(−0.733+0.368i)T+(10.1−13.6i)T2 |
| 19 | 1+(0.468+8.04i)T+(−18.8+2.20i)T2 |
| 23 | 1+(−2.88+7.48i)T+(−17.0−15.4i)T2 |
| 29 | 1+(−2.38−1.70i)T+(9.38+27.4i)T2 |
| 31 | 1+(1.81−2.08i)T+(−4.19−30.7i)T2 |
| 37 | 1+(1.78+2.39i)T+(−10.6+35.4i)T2 |
| 41 | 1+(−2.19+8.50i)T+(−35.8−19.8i)T2 |
| 43 | 1+(1.13+1.02i)T+(4.16+42.7i)T2 |
| 47 | 1+(−1.86−2.13i)T+(−6.36+46.5i)T2 |
| 53 | 1+(1.22−6.95i)T+(−49.8−18.1i)T2 |
| 59 | 1+(−2.23+0.913i)T+(42.1−41.3i)T2 |
| 61 | 1+(1.90−1.14i)T+(28.4−53.9i)T2 |
| 67 | 1+(7.25−5.18i)T+(21.6−63.3i)T2 |
| 71 | 1+(2.04+6.83i)T+(−59.3+39.0i)T2 |
| 73 | 1+(−14.6+3.47i)T+(65.2−32.7i)T2 |
| 79 | 1+(10.8−10.6i)T+(1.53−78.9i)T2 |
| 83 | 1+(1.54+6.00i)T+(−72.6+40.0i)T2 |
| 89 | 1+(5.19−17.3i)T+(−74.3−48.9i)T2 |
| 97 | 1+(−13.4−0.522i)T+(96.7+7.51i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.68953112616592275826788713469, −8.959127549274635581023788409763, −8.590602296841836995237789012840, −7.60448696983116287694939132371, −6.72268813347388002859410220487, −5.38931810581654658522080635992, −4.74057305784342526530250512611, −4.05655378208675481332578367593, −2.79801724103107405701565754992, −0.70551847543815980067025588361,
1.64855448895931878419748270619, 3.39258958823643269161813833602, 4.16032889863781852291340132422, 4.80429602769727810877586250548, 5.73953633878273622231144072573, 7.36554932786645450144687304933, 8.012970875632591890884548603101, 8.448592204933596627779829310906, 9.740754130797531053356741684235, 10.95446102836477320280404918705