L(s) = 1 | + 0.684·2-s − 1.53·4-s + 1.04·5-s − 0.120·7-s − 2.41·8-s + 0.716·10-s − 5.43·11-s − 4.57·13-s − 0.0825·14-s + 1.41·16-s + 4.77·17-s − 0.588·19-s − 1.60·20-s − 3.71·22-s − 7.79·23-s − 3.90·25-s − 3.12·26-s + 0.184·28-s + 5.06·29-s − 8.75·31-s + 5.79·32-s + 3.26·34-s − 0.126·35-s − 2.18·37-s − 0.402·38-s − 2.53·40-s + 7.55·41-s + ⋯ |
L(s) = 1 | + 0.483·2-s − 0.766·4-s + 0.468·5-s − 0.0455·7-s − 0.854·8-s + 0.226·10-s − 1.63·11-s − 1.26·13-s − 0.0220·14-s + 0.352·16-s + 1.15·17-s − 0.135·19-s − 0.359·20-s − 0.792·22-s − 1.62·23-s − 0.780·25-s − 0.613·26-s + 0.0349·28-s + 0.941·29-s − 1.57·31-s + 1.02·32-s + 0.560·34-s − 0.0213·35-s − 0.359·37-s − 0.0653·38-s − 0.400·40-s + 1.18·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 - 0.684T + 2T^{2} \) |
| 5 | \( 1 - 1.04T + 5T^{2} \) |
| 7 | \( 1 + 0.120T + 7T^{2} \) |
| 11 | \( 1 + 5.43T + 11T^{2} \) |
| 13 | \( 1 + 4.57T + 13T^{2} \) |
| 17 | \( 1 - 4.77T + 17T^{2} \) |
| 19 | \( 1 + 0.588T + 19T^{2} \) |
| 23 | \( 1 + 7.79T + 23T^{2} \) |
| 29 | \( 1 - 5.06T + 29T^{2} \) |
| 31 | \( 1 + 8.75T + 31T^{2} \) |
| 37 | \( 1 + 2.18T + 37T^{2} \) |
| 41 | \( 1 - 7.55T + 41T^{2} \) |
| 43 | \( 1 + 1.30T + 43T^{2} \) |
| 47 | \( 1 - 2.41T + 47T^{2} \) |
| 53 | \( 1 + 3.04T + 53T^{2} \) |
| 59 | \( 1 + 0.0439T + 59T^{2} \) |
| 61 | \( 1 + 10.2T + 61T^{2} \) |
| 67 | \( 1 + 1.85T + 67T^{2} \) |
| 71 | \( 1 + 6.51T + 71T^{2} \) |
| 73 | \( 1 - 12.2T + 73T^{2} \) |
| 79 | \( 1 - 0.702T + 79T^{2} \) |
| 83 | \( 1 - 6.77T + 83T^{2} \) |
| 89 | \( 1 - 6.85T + 89T^{2} \) |
| 97 | \( 1 + 9.02T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.953319706019331675632222586745, −9.326446905088949311696844445567, −8.057008223326773798952635528577, −7.58991148221943433320867178347, −6.02778339142187332055895830152, −5.39442895080689314598392697047, −4.61866102789252945367366014863, −3.37271331776158128599555717434, −2.25062693712165773401531433440, 0,
2.25062693712165773401531433440, 3.37271331776158128599555717434, 4.61866102789252945367366014863, 5.39442895080689314598392697047, 6.02778339142187332055895830152, 7.58991148221943433320867178347, 8.057008223326773798952635528577, 9.326446905088949311696844445567, 9.953319706019331675632222586745