L(s) = 1 | + 2.45·2-s + 4.04·4-s + 3.08·5-s − 2.65·7-s + 5.01·8-s + 7.57·10-s + 3.43·11-s − 3.34·13-s − 6.53·14-s + 4.24·16-s − 2.57·17-s − 2.09·19-s + 12.4·20-s + 8.44·22-s − 0.534·23-s + 4.48·25-s − 8.21·26-s − 10.7·28-s − 2.53·29-s + 7.71·31-s + 0.404·32-s − 6.32·34-s − 8.18·35-s − 10.2·37-s − 5.15·38-s + 15.4·40-s + 4.88·41-s + ⋯ |
L(s) = 1 | + 1.73·2-s + 2.02·4-s + 1.37·5-s − 1.00·7-s + 1.77·8-s + 2.39·10-s + 1.03·11-s − 0.927·13-s − 1.74·14-s + 1.06·16-s − 0.623·17-s − 0.481·19-s + 2.78·20-s + 1.79·22-s − 0.111·23-s + 0.897·25-s − 1.61·26-s − 2.03·28-s − 0.469·29-s + 1.38·31-s + 0.0715·32-s − 1.08·34-s − 1.38·35-s − 1.69·37-s − 0.835·38-s + 2.44·40-s + 0.762·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 729 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.509235119\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.509235119\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
good | 2 | \( 1 - 2.45T + 2T^{2} \) |
| 5 | \( 1 - 3.08T + 5T^{2} \) |
| 7 | \( 1 + 2.65T + 7T^{2} \) |
| 11 | \( 1 - 3.43T + 11T^{2} \) |
| 13 | \( 1 + 3.34T + 13T^{2} \) |
| 17 | \( 1 + 2.57T + 17T^{2} \) |
| 19 | \( 1 + 2.09T + 19T^{2} \) |
| 23 | \( 1 + 0.534T + 23T^{2} \) |
| 29 | \( 1 + 2.53T + 29T^{2} \) |
| 31 | \( 1 - 7.71T + 31T^{2} \) |
| 37 | \( 1 + 10.2T + 37T^{2} \) |
| 41 | \( 1 - 4.88T + 41T^{2} \) |
| 43 | \( 1 - 2.74T + 43T^{2} \) |
| 47 | \( 1 - 5.65T + 47T^{2} \) |
| 53 | \( 1 + 6.42T + 53T^{2} \) |
| 59 | \( 1 + 1.65T + 59T^{2} \) |
| 61 | \( 1 - 14.3T + 61T^{2} \) |
| 67 | \( 1 + 5.87T + 67T^{2} \) |
| 71 | \( 1 + 14.8T + 71T^{2} \) |
| 73 | \( 1 - 1.88T + 73T^{2} \) |
| 79 | \( 1 - 17.1T + 79T^{2} \) |
| 83 | \( 1 + 3.96T + 83T^{2} \) |
| 89 | \( 1 + 5.09T + 89T^{2} \) |
| 97 | \( 1 + 10.6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45993401100749620352636241800, −9.701782845455050464096387885269, −8.912867490282402835491836840995, −7.14905099169695093529453024671, −6.44919069617124175684135911984, −5.95935953697554333580735664585, −4.96916465618776219066087924016, −4.00043091038429119732600511879, −2.86788501803561593153001593501, −1.97151419509781647553660511517,
1.97151419509781647553660511517, 2.86788501803561593153001593501, 4.00043091038429119732600511879, 4.96916465618776219066087924016, 5.95935953697554333580735664585, 6.44919069617124175684135911984, 7.14905099169695093529453024671, 8.912867490282402835491836840995, 9.701782845455050464096387885269, 10.45993401100749620352636241800