L(s) = 1 | + 0.801·2-s − 1.35·4-s + 2.74·5-s + 2.37·7-s − 2.69·8-s + 2.20·10-s + 0.250·11-s + 2.61·13-s + 1.90·14-s + 0.558·16-s + 0.293·17-s − 2.78·19-s − 3.73·20-s + 0.200·22-s + 6.68·23-s + 2.56·25-s + 2.09·26-s − 3.22·28-s + 0.355·29-s + 2.76·31-s + 5.82·32-s + 0.235·34-s + 6.53·35-s − 6.99·37-s − 2.23·38-s − 7.40·40-s + 9.71·41-s + ⋯ |
L(s) = 1 | + 0.566·2-s − 0.678·4-s + 1.22·5-s + 0.898·7-s − 0.951·8-s + 0.696·10-s + 0.0754·11-s + 0.724·13-s + 0.509·14-s + 0.139·16-s + 0.0711·17-s − 0.638·19-s − 0.834·20-s + 0.0427·22-s + 1.39·23-s + 0.512·25-s + 0.410·26-s − 0.609·28-s + 0.0659·29-s + 0.496·31-s + 1.03·32-s + 0.0403·34-s + 1.10·35-s − 1.14·37-s − 0.362·38-s − 1.17·40-s + 1.51·41-s + ⋯ |
Λ(s)=(=(729s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(729s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.268357822 |
L(21) |
≈ |
2.268357822 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1−0.801T+2T2 |
| 5 | 1−2.74T+5T2 |
| 7 | 1−2.37T+7T2 |
| 11 | 1−0.250T+11T2 |
| 13 | 1−2.61T+13T2 |
| 17 | 1−0.293T+17T2 |
| 19 | 1+2.78T+19T2 |
| 23 | 1−6.68T+23T2 |
| 29 | 1−0.355T+29T2 |
| 31 | 1−2.76T+31T2 |
| 37 | 1+6.99T+37T2 |
| 41 | 1−9.71T+41T2 |
| 43 | 1−0.260T+43T2 |
| 47 | 1−11.4T+47T2 |
| 53 | 1+5.43T+53T2 |
| 59 | 1+5.97T+59T2 |
| 61 | 1+11.8T+61T2 |
| 67 | 1−1.81T+67T2 |
| 71 | 1−0.370T+71T2 |
| 73 | 1−5.02T+73T2 |
| 79 | 1−0.802T+79T2 |
| 83 | 1−2.75T+83T2 |
| 89 | 1+10.4T+89T2 |
| 97 | 1+14.8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.47017994605221985339116531382, −9.348637072378261415799462503324, −8.893347049563682696967928243676, −7.931653211445087675152416412465, −6.56973190170137728147159506157, −5.74146236624903320690813286505, −5.02188312889748839748182524500, −4.10512819238575549410036105488, −2.76093908222073722224892930864, −1.36316394305759133768250012775,
1.36316394305759133768250012775, 2.76093908222073722224892930864, 4.10512819238575549410036105488, 5.02188312889748839748182524500, 5.74146236624903320690813286505, 6.56973190170137728147159506157, 7.931653211445087675152416412465, 8.893347049563682696967928243676, 9.348637072378261415799462503324, 10.47017994605221985339116531382