L(s) = 1 | + (−0.390 + 0.142i)2-s + (−1.39 + 1.17i)4-s + (−0.384 − 2.18i)5-s + (−1.01 − 0.848i)7-s + (0.795 − 1.37i)8-s + (0.460 + 0.797i)10-s + (0.905 − 5.13i)11-s + (0.0169 + 0.00617i)13-s + (0.515 + 0.187i)14-s + (0.519 − 2.94i)16-s + (−1.56 − 2.71i)17-s + (−0.208 + 0.361i)19-s + (3.10 + 2.60i)20-s + (0.376 + 2.13i)22-s + (0.792 − 0.664i)23-s + ⋯ |
L(s) = 1 | + (−0.276 + 0.100i)2-s + (−0.699 + 0.587i)4-s + (−0.172 − 0.975i)5-s + (−0.382 − 0.320i)7-s + (0.281 − 0.486i)8-s + (0.145 + 0.252i)10-s + (0.273 − 1.54i)11-s + (0.00470 + 0.00171i)13-s + (0.137 + 0.0501i)14-s + (0.129 − 0.737i)16-s + (−0.379 − 0.658i)17-s + (−0.0478 + 0.0829i)19-s + (0.693 + 0.581i)20-s + (0.0802 + 0.454i)22-s + (0.165 − 0.138i)23-s + ⋯ |
Λ(s)=(=(243s/2ΓC(s)L(s)(0.0342+0.999i)Λ(2−s)
Λ(s)=(=(243s/2ΓC(s+1/2)L(s)(0.0342+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
243
= 35
|
Sign: |
0.0342+0.999i
|
Analytic conductor: |
1.94036 |
Root analytic conductor: |
1.39296 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ243(55,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 243, ( :1/2), 0.0342+0.999i)
|
Particular Values
L(1) |
≈ |
0.501784−0.484899i |
L(21) |
≈ |
0.501784−0.484899i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
good | 2 | 1+(0.390−0.142i)T+(1.53−1.28i)T2 |
| 5 | 1+(0.384+2.18i)T+(−4.69+1.71i)T2 |
| 7 | 1+(1.01+0.848i)T+(1.21+6.89i)T2 |
| 11 | 1+(−0.905+5.13i)T+(−10.3−3.76i)T2 |
| 13 | 1+(−0.0169−0.00617i)T+(9.95+8.35i)T2 |
| 17 | 1+(1.56+2.71i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.208−0.361i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−0.792+0.664i)T+(3.99−22.6i)T2 |
| 29 | 1+(7.33−2.67i)T+(22.2−18.6i)T2 |
| 31 | 1+(−2.85+2.39i)T+(5.38−30.5i)T2 |
| 37 | 1+(2.21+3.83i)T+(−18.5+32.0i)T2 |
| 41 | 1+(3.45+1.25i)T+(31.4+26.3i)T2 |
| 43 | 1+(1.44−8.18i)T+(−40.4−14.7i)T2 |
| 47 | 1+(−5.43−4.56i)T+(8.16+46.2i)T2 |
| 53 | 1−1.30T+53T2 |
| 59 | 1+(−0.642−3.64i)T+(−55.4+20.1i)T2 |
| 61 | 1+(−5.29−4.44i)T+(10.5+60.0i)T2 |
| 67 | 1+(−10.3−3.77i)T+(51.3+43.0i)T2 |
| 71 | 1+(3.04+5.26i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−0.273+0.473i)T+(−36.5−63.2i)T2 |
| 79 | 1+(0.459−0.167i)T+(60.5−50.7i)T2 |
| 83 | 1+(−4.33+1.57i)T+(63.5−53.3i)T2 |
| 89 | 1+(1.68−2.92i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−1.72+9.79i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.96879328246082458064912780422, −10.97321967139074796256243485580, −9.618535768383830151142293331805, −8.856596666339093222517658407507, −8.227622197184078193691998977458, −7.04560758329660796389877974175, −5.59890686609059142331509056542, −4.39450301541084139166757451515, −3.32130927185436354277099830122, −0.63785935165237415554850599101,
2.06634732829371572326563103330, 3.81089266153517650433016824059, 5.06966530297209793477294156218, 6.38820306523184060508178536038, 7.30790505257607122214211524993, 8.626710211926974859544209617170, 9.630019641807091201905040793708, 10.27126383217846842353228214566, 11.18578277389389697904213226603, 12.34311400670985931596754848265