Properties

Label 2-3e5-27.13-c1-0-0
Degree $2$
Conductor $243$
Sign $-0.750 - 0.660i$
Analytic cond. $1.94036$
Root an. cond. $1.39296$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.367 + 2.08i)2-s + (−2.33 + 0.848i)4-s + (2.05 + 1.72i)5-s + (−0.913 − 0.332i)7-s + (−0.508 − 0.880i)8-s + (−2.83 + 4.91i)10-s + (0.242 − 0.203i)11-s + (−0.262 + 1.49i)13-s + (0.357 − 2.02i)14-s + (−2.15 + 1.80i)16-s + (0.587 − 1.01i)17-s + (−3.11 − 5.38i)19-s + (−6.25 − 2.27i)20-s + (0.513 + 0.431i)22-s + (2.03 − 0.739i)23-s + ⋯
L(s)  = 1  + (0.259 + 1.47i)2-s + (−1.16 + 0.424i)4-s + (0.919 + 0.771i)5-s + (−0.345 − 0.125i)7-s + (−0.179 − 0.311i)8-s + (−0.897 + 1.55i)10-s + (0.0731 − 0.0614i)11-s + (−0.0729 + 0.413i)13-s + (0.0955 − 0.541i)14-s + (−0.538 + 0.451i)16-s + (0.142 − 0.246i)17-s + (−0.713 − 1.23i)19-s + (−1.39 − 0.508i)20-s + (0.109 + 0.0919i)22-s + (0.423 − 0.154i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.750 - 0.660i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 243 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.750 - 0.660i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(243\)    =    \(3^{5}\)
Sign: $-0.750 - 0.660i$
Analytic conductor: \(1.94036\)
Root analytic conductor: \(1.39296\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{243} (28, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 243,\ (\ :1/2),\ -0.750 - 0.660i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.534954 + 1.41674i\)
\(L(\frac12)\) \(\approx\) \(0.534954 + 1.41674i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-0.367 - 2.08i)T + (-1.87 + 0.684i)T^{2} \)
5 \( 1 + (-2.05 - 1.72i)T + (0.868 + 4.92i)T^{2} \)
7 \( 1 + (0.913 + 0.332i)T + (5.36 + 4.49i)T^{2} \)
11 \( 1 + (-0.242 + 0.203i)T + (1.91 - 10.8i)T^{2} \)
13 \( 1 + (0.262 - 1.49i)T + (-12.2 - 4.44i)T^{2} \)
17 \( 1 + (-0.587 + 1.01i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (3.11 + 5.38i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-2.03 + 0.739i)T + (17.6 - 14.7i)T^{2} \)
29 \( 1 + (-0.764 - 4.33i)T + (-27.2 + 9.91i)T^{2} \)
31 \( 1 + (-8.15 + 2.96i)T + (23.7 - 19.9i)T^{2} \)
37 \( 1 + (-2.23 + 3.86i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (1.01 - 5.75i)T + (-38.5 - 14.0i)T^{2} \)
43 \( 1 + (-4.28 + 3.59i)T + (7.46 - 42.3i)T^{2} \)
47 \( 1 + (2.32 + 0.846i)T + (36.0 + 30.2i)T^{2} \)
53 \( 1 - 10.8T + 53T^{2} \)
59 \( 1 + (-1.32 - 1.10i)T + (10.2 + 58.1i)T^{2} \)
61 \( 1 + (0.953 + 0.347i)T + (46.7 + 39.2i)T^{2} \)
67 \( 1 + (-0.148 + 0.843i)T + (-62.9 - 22.9i)T^{2} \)
71 \( 1 + (4.79 - 8.31i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (-7.62 - 13.1i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (1.94 + 11.0i)T + (-74.2 + 27.0i)T^{2} \)
83 \( 1 + (0.813 + 4.61i)T + (-77.9 + 28.3i)T^{2} \)
89 \( 1 + (7.74 + 13.4i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (4.25 - 3.56i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99502820002503702978494733099, −11.45121889580861494256752105322, −10.41867310353171610929469334475, −9.377663678595439806809320803127, −8.398359117806591979373593171989, −7.02758877101067834934996008052, −6.61142129243883973810201005957, −5.63070711235075331386215997332, −4.43930656052956513692172363484, −2.58863582626795033509905037222, 1.33778468142997423028846564488, 2.64619305693428756062890198981, 4.03885395360661162069839467918, 5.23694700145450967113248960421, 6.38320618196520032975936497747, 8.149102454692176873554246152425, 9.298858184970708323074137206196, 9.983341682837107103211584660339, 10.70988514795102199398488664146, 11.96871116016160670702656541201

Graph of the $Z$-function along the critical line